Shu-qin Lan , Wei-cheng Ren , Zhao Wang , Chang Yu , Jin-he Yu , Ying-bin Liu , Yuan-yang Xie , Xiu-bo Zhang , Jian-jian Wang , Jie-shan Qiu
{"title":"Sulfonyl chloride-intensified metal chloride intercalation of graphite for efficient sodium storage","authors":"Shu-qin Lan , Wei-cheng Ren , Zhao Wang , Chang Yu , Jin-he Yu , Ying-bin Liu , Yuan-yang Xie , Xiu-bo Zhang , Jian-jian Wang , Jie-shan Qiu","doi":"10.1016/S1872-5805(24)60851-6","DOIUrl":null,"url":null,"abstract":"<div><p>Metal chloride-intercalated graphite with excellent conductivity and a large interlayer spacing is highly desired for use in sodium ion batteries. However, halogen vapor is usually indispensable in initiating the intercalation process, which makes equipment design and experiments challenging. In this work, SO<sub>2</sub>Cl<sub>2</sub> was used as a chlorine generator to intensify the intercalation of BiCl<sub>3</sub> into graphite (BiCl<sub>3</sub>-GICs), which avoided the potential risks, such as Cl<sub>2</sub> leakage, in traditional methods. The operational efficiency in the experiment was also improved. After the reaction of SO<sub>2</sub>Cl<sub>2</sub>, BiCl<sub>3</sub>, and graphite at 200 <sup>o</sup>C for 20 h, the synthesized BiCl<sub>3</sub>-GICs had a large interlayer spacing (1.26 nm) and a high amount of BiCl<sub>3</sub> intercalation (42%), which gave SIBs a high specific capacity of 213 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup> and an excellent rate performance (170 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup>). In-situ Raman spectra revealed that the electronic interaction between graphite and intercalated BiCl<sub>3</sub> is weakened during the first discharge, which is favorable for sodium storage. This work broadly enables the increased intercalation of other metal chloride-intercalated graphites, offering possibilities for developing advanced energy storage devices.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 538-548"},"PeriodicalIF":5.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580524608516","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Metal chloride-intercalated graphite with excellent conductivity and a large interlayer spacing is highly desired for use in sodium ion batteries. However, halogen vapor is usually indispensable in initiating the intercalation process, which makes equipment design and experiments challenging. In this work, SO2Cl2 was used as a chlorine generator to intensify the intercalation of BiCl3 into graphite (BiCl3-GICs), which avoided the potential risks, such as Cl2 leakage, in traditional methods. The operational efficiency in the experiment was also improved. After the reaction of SO2Cl2, BiCl3, and graphite at 200 oC for 20 h, the synthesized BiCl3-GICs had a large interlayer spacing (1.26 nm) and a high amount of BiCl3 intercalation (42%), which gave SIBs a high specific capacity of 213 mAh g−1 at 1 A g−1 and an excellent rate performance (170 mAh g−1 at 5 A g−1). In-situ Raman spectra revealed that the electronic interaction between graphite and intercalated BiCl3 is weakened during the first discharge, which is favorable for sodium storage. This work broadly enables the increased intercalation of other metal chloride-intercalated graphites, offering possibilities for developing advanced energy storage devices.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.