Plasma-assisted preparation of NiCoAl-layered double hydroxides with alarge interlayer spacing on carbon cloth forelectrochemical deionization

IF 5.7 3区 材料科学 Q2 Materials Science New Carbon Materials Pub Date : 2024-06-01 DOI:10.1016/S1872-5805(24)60854-1
Qiu-tong Jiang , Guo-qing Wang , Yi Li , Hong-wei Huang , Qian Li , Jian Yang
{"title":"Plasma-assisted preparation of NiCoAl-layered double hydroxides with alarge interlayer spacing on carbon cloth forelectrochemical deionization","authors":"Qiu-tong Jiang ,&nbsp;Guo-qing Wang ,&nbsp;Yi Li ,&nbsp;Hong-wei Huang ,&nbsp;Qian Li ,&nbsp;Jian Yang","doi":"10.1016/S1872-5805(24)60854-1","DOIUrl":null,"url":null,"abstract":"<div><p>Capacitive deionization has been considered an emerging desalination technique in recent years, especially for its economic and energy-saving characteristics for brackish water. However, there are currently few studies on chloride ion removal electrodes, and the slow desalination kinetics limits their development. Ar-NiCoAl- layered double hydroxide (LDH)@ACC materials with an increased interlayer spacing were prepared by the in-situ growth of NiCoAl-LDHs nanosheet arrays on acid-treated carbon cloth (ACC) and subsequent Ar plasma treatment. The carbon cloth suppresses the agglomeration of the NiCoAl-LDHs nanosheets and improves the electrical conductivity, while the plasma treatment increases the interlayer spacing of NiCoAl-LDHs and improves its hydrophilicity. This provides rapid diffusion channels and more interlayer active sites for chloride ions, achieving high desalination kinetics. A hybrid capacitive deionization (HCDI) cell was assembled using Ar-NiCoAl-LDHs@ACC as the chloride ion removal electrode and activated carbon as the sodium ion removal electrode. This HCDI cell achieved a high desalination capacity of 93.26 mg g<sup>−1</sup> at 1.2 V in a 1000 mg L<sup>−1</sup> NaCl solution, a remarkable desalination rate of 0.27 mg g<sup>−1</sup> s<sup>−1</sup>, and a good charge efficiency of 0.97. The capacity retention remained above 85% after 100 cycles in a 300 mg L<sup>−1</sup> NaCl solution at 0.8 V. The work provides new ideas for the controlled preparation of two-dimensional metal hydroxide materials with a large interlayer spacing and the design of high-performance electrochemical chlorine ion removal electrodes.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580524608541","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Capacitive deionization has been considered an emerging desalination technique in recent years, especially for its economic and energy-saving characteristics for brackish water. However, there are currently few studies on chloride ion removal electrodes, and the slow desalination kinetics limits their development. Ar-NiCoAl- layered double hydroxide (LDH)@ACC materials with an increased interlayer spacing were prepared by the in-situ growth of NiCoAl-LDHs nanosheet arrays on acid-treated carbon cloth (ACC) and subsequent Ar plasma treatment. The carbon cloth suppresses the agglomeration of the NiCoAl-LDHs nanosheets and improves the electrical conductivity, while the plasma treatment increases the interlayer spacing of NiCoAl-LDHs and improves its hydrophilicity. This provides rapid diffusion channels and more interlayer active sites for chloride ions, achieving high desalination kinetics. A hybrid capacitive deionization (HCDI) cell was assembled using Ar-NiCoAl-LDHs@ACC as the chloride ion removal electrode and activated carbon as the sodium ion removal electrode. This HCDI cell achieved a high desalination capacity of 93.26 mg g−1 at 1.2 V in a 1000 mg L−1 NaCl solution, a remarkable desalination rate of 0.27 mg g−1 s−1, and a good charge efficiency of 0.97. The capacity retention remained above 85% after 100 cycles in a 300 mg L−1 NaCl solution at 0.8 V. The work provides new ideas for the controlled preparation of two-dimensional metal hydroxide materials with a large interlayer spacing and the design of high-performance electrochemical chlorine ion removal electrodes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子体辅助制备碳布上具有较大层间距的镍钴铝层双氢氧化物的电化学去离子技术
近年来,电容式去离子法一直被认为是一种新兴的海水淡化技术,特别是在苦咸水方面具有经济和节能的特点。然而,目前有关氯离子去除电极的研究很少,而且脱盐动力学缓慢,限制了其发展。通过在酸处理碳布(ACC)上原位生长镍钴铝-层状双氢氧化物(LDH)纳米片阵列并随后进行氩等离子处理,制备了层间距增大的氩镍钴铝-层状双氢氧化物(LDH)@ACC 材料。碳布抑制了镍钴铝-LDHs 纳米片的团聚并提高了导电性,而等离子体处理增加了镍钴铝-LDHs 的层间距并提高了其亲水性。这为氯离子提供了快速扩散通道和更多的层间活性位点,从而实现了较高的脱盐动力学性能。以 Ar-NiCoAl-LDHs@ACC 作为氯离子去除电极,以活性炭作为钠离子去除电极,组装了一个混合电容式去离子(HCDI)电池。在 1000 mg L-1 NaCl 溶液中,该 HCDI 电池在 1.2 V 电压下的脱盐容量高达 93.26 mg g-1,脱盐速率高达 0.27 mg g-1 s-1,充电效率高达 0.97。在 300 mg L-1 NaCl 溶液中以 0.8 V 的电压循环 100 次后,容量保持率仍在 85% 以上。该研究成果为控制制备具有较大层间距的二维金属氢氧化物材料和设计高性能电化学氯离子去除电极提供了新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
期刊最新文献
A review of hard carbon anodes for rechargeable sodium-ion batteries Recent advances in producing hollow carbon spheres for use in sodium−sulfur and potassium−sulfur batteries Design, progress and challenges of 3D carbon-based thermally conductive networks The application of metal–organic frameworks and their derivatives for lithium-ion capacitors A review of the carbon coating of the silicon anode in high-performance lithium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1