Dealloying induced Porous Bi anodes for rechargeable magnesium-ion batteries

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-06-24 DOI:10.1016/j.jpowsour.2024.234943
Kai Zheng , Bin Yu , Wensheng Ma , Xiangyu Fei , Guanhua Cheng , Meijia Song , Zhonghua Zhang
{"title":"Dealloying induced Porous Bi anodes for rechargeable magnesium-ion batteries","authors":"Kai Zheng ,&nbsp;Bin Yu ,&nbsp;Wensheng Ma ,&nbsp;Xiangyu Fei ,&nbsp;Guanhua Cheng ,&nbsp;Meijia Song ,&nbsp;Zhonghua Zhang","doi":"10.1016/j.jpowsour.2024.234943","DOIUrl":null,"url":null,"abstract":"<div><p>Alloy-type anodes have attracted extensive attention in magnesium-ion batteries (MIBs) due to their low reaction potentials and high theoretical specific capacities. However, the kinetically sluggish Mg insertion/extraction and diffusion in electrode materials, as well as the huge volume changes resulting in the capacity decay limit their further development. Herein, a series of porous-Bi (P-Bi<sub>x</sub>) anodes are fabricated through a facile dealloying strategy based on the Sn<sub>100-x</sub>Bi<sub>x</sub> (x = 1, 5, 10, 43, at.%) precursor alloys. Among them, the P–Bi<sub>10</sub> anode delivers a high discharge specific capacity (376.0 mAh g<sup>−1</sup> at 500 mA g<sup>−1</sup>), greatly improved rate capability (363.3 mAh g<sup>−1</sup> at 1000 mA g<sup>−1</sup>) and good cycling stability even at 2000 mA g<sup>−1</sup> (104.0 mAh g<sup>−1</sup> after 1000 cycles). Furthermore, operando X-ray diffraction (XRD) is performed to unveil the magnesiation/demagnesiation mechanisms of the P–Bi<sub>5</sub> and P–Bi<sub>10</sub> anodes, indicating a simple two-phase reaction process. Additionally, the P–Bi<sub>10</sub> anode displays good compatibility with conventional Mg salt electrolytes such as Mg(TFSI)<sub>2</sub>. Our findings could provide useful information on design of high-performance alloy-type anode materials for MIBs.</p></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324008954","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Alloy-type anodes have attracted extensive attention in magnesium-ion batteries (MIBs) due to their low reaction potentials and high theoretical specific capacities. However, the kinetically sluggish Mg insertion/extraction and diffusion in electrode materials, as well as the huge volume changes resulting in the capacity decay limit their further development. Herein, a series of porous-Bi (P-Bix) anodes are fabricated through a facile dealloying strategy based on the Sn100-xBix (x = 1, 5, 10, 43, at.%) precursor alloys. Among them, the P–Bi10 anode delivers a high discharge specific capacity (376.0 mAh g−1 at 500 mA g−1), greatly improved rate capability (363.3 mAh g−1 at 1000 mA g−1) and good cycling stability even at 2000 mA g−1 (104.0 mAh g−1 after 1000 cycles). Furthermore, operando X-ray diffraction (XRD) is performed to unveil the magnesiation/demagnesiation mechanisms of the P–Bi5 and P–Bi10 anodes, indicating a simple two-phase reaction process. Additionally, the P–Bi10 anode displays good compatibility with conventional Mg salt electrolytes such as Mg(TFSI)2. Our findings could provide useful information on design of high-performance alloy-type anode materials for MIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可充电镁离子电池的去合金化诱导多孔生物阳极
合金型阳极因其反应电位低、理论比容量高而在镁离子电池(MIB)中受到广泛关注。然而,镁在电极材料中缓慢的插入/萃取和扩散,以及导致容量衰减的巨大体积变化限制了它们的进一步发展。本文以 Sn100-xBix(x = 1、5、10、43、at.%)前驱体合金为基础,通过简便的脱合金策略制造了一系列多孔铋(P-Bix)阳极。其中,P-Bi10 阳极具有较高的放电比容量(500 mA g-1 时为 376.0 mAh g-1),大大提高了速率能力(1000 mA g-1 时为 363.3 mAh g-1),即使在 2000 mA g-1 时也具有良好的循环稳定性(1000 次循环后为 104.0 mAh g-1)。此外,还进行了操作性 X 射线衍射 (XRD),以揭示 P-Bi5 和 P-Bi10 阳极的镁化/脱镁机制,表明这是一个简单的两相反应过程。此外,P-Bi10 阳极与传统的镁盐电解质(如 Mg(TFSI)2)具有良好的兼容性。我们的研究结果可为设计用于 MIB 的高性能合金型阳极材料提供有用信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
Impact of fuel starvation–induced anode carbon corrosion in proton exchange membrane fuel cells on the structure of the membrane electrode assembly and exhaust gas emissions: A quantitative case study A eutectic mixture catalyzed straight forward production of functional carbon from Sargassum tenerrimum for energy storage application The impact of mechanical vibration at cathode on hydrogen yields in water electrolysis Capabilities of a novel electrochemical cell for operando XAS and SAXS investigations for PEM fuel cells and water electrolysers Operando gas chromatography mass spectrometry for the continuous study of overcharge-induced electrolyte decomposition in lithium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1