The influence of molecular structure on the oxidation reactivity of long-chain ethers: Experimental observation and theoretical analysis

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS Fuel Pub Date : 2024-06-29 DOI:10.1016/j.fuel.2024.132345
Shiliang Wu, Jiajing Bao, Hongfei Bie, Yuan Liu
{"title":"The influence of molecular structure on the oxidation reactivity of long-chain ethers: Experimental observation and theoretical analysis","authors":"Shiliang Wu,&nbsp;Jiajing Bao,&nbsp;Hongfei Bie,&nbsp;Yuan Liu","doi":"10.1016/j.fuel.2024.132345","DOIUrl":null,"url":null,"abstract":"<div><p>Long-chain ethers have been proposed as promising biofuels for advanced combustion methods, yet their low-temperature oxidation (LTO) characteristics remain poorly understood. In this study, the LTO reactivities of <em>n</em>-heptane and five long-chain ethers with different structures, including dibutyl ether (DBE), diethylene glycol dimethyl ether (DGM), polyoxymethylene dimethyl ethers (PODE), 1,2-dimethoxyethane (1,2-DME), and dipropyleneglycol dimethyl ether (DPGDE) are investigated using a cooperative fuel research (CFR) engine, which is closer to the actual internal combustion engine operating environment. Products formed from LTO of ethers and <em>n</em>-heptane are investigated over a wide range of compress ratios (CRs), and their relationship to the global oxidation reactivity is suggested based on the quantum chemistry calculation. The presence of oxygen atoms in long-chain ethers significantly enhances oxidation reactivity, with the global oxidation reactivity ranking as follows: DGM &gt; DPGDE &gt; 1,2-DME &gt; DBE &gt; PODE &gt; n-heptane. The key intermediate species generated during the LTO of <em>n</em>-heptane include aldehydes, ketones, and cyclic ethers, while oxygen atoms in ethers facilitate the formation of acids. The species pathway analysis and quantum chemistry calculations reveal that (1,5) and (1,6) H-transfers of alkylperoxy radical (<span><math><mrow><mtext>R</mtext><mtext>O</mtext><mover><mtext>O</mtext><mo>̇</mo></mover></mrow></math></span>) are critical chain-propagation channels, playing pivotal roles in the LTO process. The impact of oxygen on oxidation reactivity can be attributed to two primary factors: accelerating the H-abstraction of <span><math><mrow><mover><mtext>O</mtext><mo>̇</mo></mover><mtext>H</mtext></mrow></math></span> and H-transfer of <span><math><mrow><mtext>R</mtext><mtext>O</mtext><mover><mtext>O</mtext><mo>̇</mo></mover></mrow></math></span> by weakening the neighboring C-H bonds, and enhancing the branching ratio of H-transfer of <span><math><mrow><mtext>R</mtext><mtext>O</mtext><mover><mtext>O</mtext><mo>̇</mo></mover></mrow></math></span>. The arrangement of two oxygen atoms between every two carbon atoms (–OCH<sub>2</sub>CH<sub>2</sub>O–) is optimal for oxidation reactivity, while the arrangement of oxygen and carbon (–OCH<sub>2</sub>OCH<sub>2</sub>–) weakens the oxidation activity due to fewer available hydrogens for H-transfer. The methyl group in branching-chain, exhibit reduced oxidation reactivity due to the strength of C-H bonds. Additionally, for ethers with the same structure, a longer carbon chain allows for more available hydrogens, resulting in stronger oxidation reactivity.</p></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124014935","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Long-chain ethers have been proposed as promising biofuels for advanced combustion methods, yet their low-temperature oxidation (LTO) characteristics remain poorly understood. In this study, the LTO reactivities of n-heptane and five long-chain ethers with different structures, including dibutyl ether (DBE), diethylene glycol dimethyl ether (DGM), polyoxymethylene dimethyl ethers (PODE), 1,2-dimethoxyethane (1,2-DME), and dipropyleneglycol dimethyl ether (DPGDE) are investigated using a cooperative fuel research (CFR) engine, which is closer to the actual internal combustion engine operating environment. Products formed from LTO of ethers and n-heptane are investigated over a wide range of compress ratios (CRs), and their relationship to the global oxidation reactivity is suggested based on the quantum chemistry calculation. The presence of oxygen atoms in long-chain ethers significantly enhances oxidation reactivity, with the global oxidation reactivity ranking as follows: DGM > DPGDE > 1,2-DME > DBE > PODE > n-heptane. The key intermediate species generated during the LTO of n-heptane include aldehydes, ketones, and cyclic ethers, while oxygen atoms in ethers facilitate the formation of acids. The species pathway analysis and quantum chemistry calculations reveal that (1,5) and (1,6) H-transfers of alkylperoxy radical (ROȮ) are critical chain-propagation channels, playing pivotal roles in the LTO process. The impact of oxygen on oxidation reactivity can be attributed to two primary factors: accelerating the H-abstraction of ȮH and H-transfer of ROȮ by weakening the neighboring C-H bonds, and enhancing the branching ratio of H-transfer of ROȮ. The arrangement of two oxygen atoms between every two carbon atoms (–OCH2CH2O–) is optimal for oxidation reactivity, while the arrangement of oxygen and carbon (–OCH2OCH2–) weakens the oxidation activity due to fewer available hydrogens for H-transfer. The methyl group in branching-chain, exhibit reduced oxidation reactivity due to the strength of C-H bonds. Additionally, for ethers with the same structure, a longer carbon chain allows for more available hydrogens, resulting in stronger oxidation reactivity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子结构对长链醚氧化反应性的影响:实验观察与理论分析
长链醚被认为是有希望用于先进燃烧方法的生物燃料,但人们对它们的低温氧化(LTO)特性仍然知之甚少。本研究使用更接近实际内燃机工作环境的合作燃料研究(CFR)发动机,对正庚烷和五种不同结构的长链醚(包括二丁醚(DBE)、二乙二醇二甲醚(DGM)、聚氧乙烯二甲醚(PODE)、1,2-二甲氧基乙烷(1,2-DME)和二丙二醇二甲醚(DPGDE))的低温氧化反应活性进行了研究。研究了醚类和正庚烷在各种压缩比 (CR) 下形成的 LTO 产物,并根据量子化学计算提出了它们与全局氧化反应性的关系。长链醚中氧原子的存在大大提高了氧化反应性,其全局氧化反应性排名如下:DGM > DPGDE > 1,2-DME > DBE > PODE > 正庚烷。在正庚烷的低温氧化过程中产生的主要中间产物包括醛、酮和环醚,而醚中的氧原子会促进酸的形成。物种路径分析和量子化学计算显示,烷基过氧自由基(ROȮ)的(1,5)和(1,6)H-转移是关键的链传导通道,在低温氧化过程中起着举足轻重的作用。氧气对氧化反应性的影响主要归因于两个因素:通过削弱邻近的 C-H 键来加速ȮH 的析取和 ROȮ 的 H-转移,以及提高 ROȮ 的 H-转移支化率。每两个碳原子之间有两个氧原子的排列方式(-OCH2CH2O-)最有利于氧化反应活性,而氧和碳的排列方式(-OCH2OCH2-)则会削弱氧化活性,因为可用于氢转移的氢较少。分支链中的甲基由于 C-H 键的强度而降低了氧化反应活性。此外,对于具有相同结构的醚来说,碳链越长,可用的氢就越多,氧化反应性就越强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
期刊最新文献
Valorization of kitchen waste hydrolysis residue for green solid fuel application: Conversion mechanism and fuel characteristics Quantitative three-dimensional reconstruction of cellular flame area for spherical hydrogen-air flames Numerical investigation of the hydrogen-enriched ammonia-diesel RCCI combustion engine High vanadium tolerant FCC catalyst by barium titanate as metal trap and passivator Optimization of a methanol/NOx combustion mechanism based on a large amount of experimental data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1