Cheng Guo , Zexin Wang , Bin Xu , Long Ye , Zhiqiang Liang , Xingzhi Xiao , Hao Li , Longhui Luo , Xiang Chen
{"title":"Proposal of six-axis micro wire electrical discharge machine tool based on novel direct drive rotation wire frame mechanism","authors":"Cheng Guo , Zexin Wang , Bin Xu , Long Ye , Zhiqiang Liang , Xingzhi Xiao , Hao Li , Longhui Luo , Xiang Chen","doi":"10.1016/j.precisioneng.2024.06.013","DOIUrl":null,"url":null,"abstract":"<div><p>This article introduces a novel highly integrated direct drive rotation wire frame mechanism for multi-axis micro wire electrical discharge machine tool. The design allows the micro electrode wire center to rotate along the motor's output shaft by ±90°, enabling machining over a complete circular area. This enhances the rotation precision and reduces the displacement of each axis, ensuring that the length of the electrode wire remains unchanged during the rotation process and thereby maintaining a stable friction force with the V-grooves. Building upon the direct drive rotation wire frame, a six-axis micro-wire electrode discharge machining machine has been developed, facilitating multi-axis coordinated processing. This study establishes the forward and inverse kinematic models using homogeneous transformation matrices to describe each axis's motion of the machine tool. A closed-form solution for the inverse kinematic model has been derived and effectively utilized for machining path planning for the electrode wire. To comprehensively characterize the machine tool's performances, a method that combines coordinate transformation, analytical geometry, and the Monte Carlo approach has been employed to determine the actual working space and the dexterity of the machine tool. Finally, a preliminary experiment with the six-axis micro wire electrical discharge machine tool demonstrates the effectiveness of the proposed direct drive rotation wire frame, verifying the inverse kinematic closed-form solutions, the practical workspace of the machine tool, and the effectiveness of dexterity and geometric error modeling.</p></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"89 ","pages":"Pages 214-229"},"PeriodicalIF":3.5000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635924001430","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
This article introduces a novel highly integrated direct drive rotation wire frame mechanism for multi-axis micro wire electrical discharge machine tool. The design allows the micro electrode wire center to rotate along the motor's output shaft by ±90°, enabling machining over a complete circular area. This enhances the rotation precision and reduces the displacement of each axis, ensuring that the length of the electrode wire remains unchanged during the rotation process and thereby maintaining a stable friction force with the V-grooves. Building upon the direct drive rotation wire frame, a six-axis micro-wire electrode discharge machining machine has been developed, facilitating multi-axis coordinated processing. This study establishes the forward and inverse kinematic models using homogeneous transformation matrices to describe each axis's motion of the machine tool. A closed-form solution for the inverse kinematic model has been derived and effectively utilized for machining path planning for the electrode wire. To comprehensively characterize the machine tool's performances, a method that combines coordinate transformation, analytical geometry, and the Monte Carlo approach has been employed to determine the actual working space and the dexterity of the machine tool. Finally, a preliminary experiment with the six-axis micro wire electrical discharge machine tool demonstrates the effectiveness of the proposed direct drive rotation wire frame, verifying the inverse kinematic closed-form solutions, the practical workspace of the machine tool, and the effectiveness of dexterity and geometric error modeling.
本文介绍了一种用于多轴微型线材放电加工机床的新型高度集成直接驱动旋转线框机构。该设计可使微型电极丝中心沿电机输出轴旋转 ±90° ,从而实现完整圆形区域的加工。这样既提高了旋转精度,又减少了各轴的位移,确保电极丝的长度在旋转过程中保持不变,从而与 V 形槽保持稳定的摩擦力。在直接驱动旋转电极丝框架的基础上,六轴微型电极丝放电加工机床应运而生,为多轴协调加工提供了便利。本研究利用同质变换矩阵建立了正向和反向运动学模型,以描述机床各轴的运动。得出了逆运动学模型的闭式解,并有效地用于电极丝的加工路径规划。为了全面描述机床的性能,我们采用了一种结合坐标变换、解析几何和蒙特卡罗方法的方法来确定机床的实际工作空间和灵巧性。最后,六轴微型线材放电加工机床的初步实验证明了所提出的直接驱动旋转线材框架的有效性,验证了逆运动学闭式解、机床的实际工作空间以及灵巧性和几何误差建模的有效性。
期刊介绍:
Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.