Reconstructing flexible body vortex-induced vibrations using machine-vision and predicting the motions using semi-empirical models informed with transfer learned hydrodynamic coefficients

IF 3.4 2区 工程技术 Q1 ENGINEERING, MECHANICAL Journal of Fluids and Structures Pub Date : 2024-06-25 DOI:10.1016/j.jfluidstructs.2024.104154
Andreas P. Mentzelopoulos , Emile Prele , Dixia Fan , Jose del Aguila Ferrandis , Themistoklis Sapsis , Michael S. Triantafyllou
{"title":"Reconstructing flexible body vortex-induced vibrations using machine-vision and predicting the motions using semi-empirical models informed with transfer learned hydrodynamic coefficients","authors":"Andreas P. Mentzelopoulos ,&nbsp;Emile Prele ,&nbsp;Dixia Fan ,&nbsp;Jose del Aguila Ferrandis ,&nbsp;Themistoklis Sapsis ,&nbsp;Michael S. Triantafyllou","doi":"10.1016/j.jfluidstructs.2024.104154","DOIUrl":null,"url":null,"abstract":"<div><p>This work assesses the validity of transfer learning the hydrodynamic coefficient database, consisting of the added mass and lift coefficients, applicable to flexible bodies undergoing vortex-induced vibrations. Specifically, the hydrodynamic coefficient database learned on data collected by Braaten and Lie (2005) are used to predict the motions observed during in house bare riser model experiments at the MIT Towing Tank. A fully immersed vertical flexible riser model with a length-to-diameter ratio of 145 is towed at different flow speeds and top tensions. Motion is tracked using underwater cameras and the motions are reconstructed using a machine-vision framework eliminating the need for expensive sensing hardware. The vibration amplitude, frequency, and mode shape are determined and the results are compared with those in the literature. Finally, blind predictions of the in-house observed experiments are made using the software VIVA informed with transfer learned hydrodynamic coefficients learned on the experiments by Braaten and Lie (2005).</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624000896","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work assesses the validity of transfer learning the hydrodynamic coefficient database, consisting of the added mass and lift coefficients, applicable to flexible bodies undergoing vortex-induced vibrations. Specifically, the hydrodynamic coefficient database learned on data collected by Braaten and Lie (2005) are used to predict the motions observed during in house bare riser model experiments at the MIT Towing Tank. A fully immersed vertical flexible riser model with a length-to-diameter ratio of 145 is towed at different flow speeds and top tensions. Motion is tracked using underwater cameras and the motions are reconstructed using a machine-vision framework eliminating the need for expensive sensing hardware. The vibration amplitude, frequency, and mode shape are determined and the results are compared with those in the literature. Finally, blind predictions of the in-house observed experiments are made using the software VIVA informed with transfer learned hydrodynamic coefficients learned on the experiments by Braaten and Lie (2005).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器视觉重构柔性体涡流诱发的振动,并利用半经验模型预测运动,同时参考转移学习的流体力学系数
这项工作评估了转移学习流体力学系数数据库的有效性,该数据库由附加质量和升力系数组成,适用于发生涡流诱导振动的柔性体。具体来说,根据 Braaten 和 Lie(2005 年)收集的数据学习的流体力学系数数据库被用于预测在麻省理工学院拖曳槽的室内裸立管模型实验中观察到的运动。在不同的流速和顶张力下拖曳长度与直径比为 145 的全浸垂直柔性立管模型。使用水下摄像机对运动进行跟踪,并使用机器视觉框架对运动进行重建,从而省去了昂贵的传感硬件。确定了振动幅度、频率和模态形状,并将结果与文献中的结果进行了比较。最后,使用 VIVA 软件对内部观察到的实验结果进行盲预测,并将 Braaten 和 Lie(2005 年)在实验中学习到的流体力学系数进行转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fluids and Structures
Journal of Fluids and Structures 工程技术-工程:机械
CiteScore
6.90
自引率
8.30%
发文量
173
审稿时长
65 days
期刊介绍: The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved. The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.
期刊最新文献
A new approach for spatio-temporal interface treatment in fluid–solid interaction using artificial neural networks employing coupled partitioned fluid–solid solvers Condensation solution method for fluid-structure interaction dynamic models of structural system Turbulence-induced vibration in annular flow of a rigid cylinder mounted on a cantilever beam Recurrent graph convolutional multi-mesh autoencoder for unsteady transonic aerodynamics On the characteristics of fluid flow field and oscillatory response of tuned liquid multi-column dampers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1