{"title":"Research on reconstruction of the global sound speed profile combining partial underwater prior information","authors":"Yuyao Liu , Yu Chen , Yichi Zhang , Wei Chen , Zhou Meng","doi":"10.1016/j.seares.2024.102516","DOIUrl":null,"url":null,"abstract":"<div><p>The sound speed profile (SSP) is an important factor affecting the acoustic propagation characteristics of the ocean, making the accurate acquisition of SSP a crucial step in the interdisciplinary research of oceanography and underwater acoustics. Limited by the cost of in-situ measurement and the performance of the instrument itself, direct measurement of SSP inevitably leads to insufficient depth or even missing information. In this paper, we propose using partial underwater prior information (UWPI) only including underwater sound speed to obtain preliminary reconstruction results of global SSP for the first time. The empirical orthogonal function (EOF) reconstruction algorithm is optimized by employing assimilated SSP as the background SSP to further reduce reconstruction errors. The maximum global average reconstruction error and root mean square error (RMSE) after optimization decrease by >51% and 71%, respectively, which indicates that the performance of the optimized algorithm combined with partial UWPI is further improved. Finally, the performance of the optimized algorithm is discussed from the perspective of acoustic propagation. This research provides a reliable technical approach for SSP reconstruction under incomplete depth conditions, which can be applied in underwater sound field prediction and acoustic detection in the future.</p></div>","PeriodicalId":50056,"journal":{"name":"Journal of Sea Research","volume":"200 ","pages":"Article 102516"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1385110124000492/pdfft?md5=a297a081fc218db1ecce7615001fe815&pid=1-s2.0-S1385110124000492-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sea Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385110124000492","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The sound speed profile (SSP) is an important factor affecting the acoustic propagation characteristics of the ocean, making the accurate acquisition of SSP a crucial step in the interdisciplinary research of oceanography and underwater acoustics. Limited by the cost of in-situ measurement and the performance of the instrument itself, direct measurement of SSP inevitably leads to insufficient depth or even missing information. In this paper, we propose using partial underwater prior information (UWPI) only including underwater sound speed to obtain preliminary reconstruction results of global SSP for the first time. The empirical orthogonal function (EOF) reconstruction algorithm is optimized by employing assimilated SSP as the background SSP to further reduce reconstruction errors. The maximum global average reconstruction error and root mean square error (RMSE) after optimization decrease by >51% and 71%, respectively, which indicates that the performance of the optimized algorithm combined with partial UWPI is further improved. Finally, the performance of the optimized algorithm is discussed from the perspective of acoustic propagation. This research provides a reliable technical approach for SSP reconstruction under incomplete depth conditions, which can be applied in underwater sound field prediction and acoustic detection in the future.
期刊介绍:
The Journal of Sea Research is an international and multidisciplinary periodical on marine research, with an emphasis on the functioning of marine ecosystems in coastal and shelf seas, including intertidal, estuarine and brackish environments. As several subdisciplines add to this aim, manuscripts are welcome from the fields of marine biology, marine chemistry, marine sedimentology and physical oceanography, provided they add to the understanding of ecosystem processes.