Xizi Wang, Eva Rosenqvist, Yuzheng Zong, Xiangnan Li, Fulai Liu
{"title":"Multigenerational Effects of Elevated CO2 and N Supply on Leaf Gas Exchange Traits in Wheat Plants","authors":"Xizi Wang, Eva Rosenqvist, Yuzheng Zong, Xiangnan Li, Fulai Liu","doi":"10.1111/jac.12722","DOIUrl":null,"url":null,"abstract":"<p>The responses of leaf gas exchange of wheat (<i>Triticum aestivum</i> L.) to elevated atmospheric CO<sub>2</sub> concentration (<i>e</i>[CO<sub>2</sub>]) were often investigated within a single generation, while the long-term acclimation of photosynthesis to growth in <i>e</i>[CO<sub>2</sub>] over multiple generations has not been systematically studied. Here, five wheat cultivars were grown under either ambient (<i>a</i>[CO<sub>2</sub>], 400 ppm) or elevated (<i>e</i>[CO<sub>2</sub>], 800 ppm) CO<sub>2</sub> concentration for three consecutive generations (G1 to G3) with two N-fertilisation levels (1N–1 g N pot<sup>−1</sup> and 2N–2 g N pot<sup>−1</sup>) in climate-controlled greenhouses. Leaf gas exchange was determined in each generation of plants under different treatments. It was found that at both N levels, <i>e</i>[CO<sub>2</sub>] stimulated photosynthetic rate while reducing stomatal conductance, transpiration rate and leaf N concentration, resulting in an enhanced water use efficiency and photosynthetic N use efficiency. The N level modulated the intergenerational responses of photosynthetic capacity to <i>e</i>[CO<sub>2</sub>]; under low N supply, the maximum carboxylation rate (<i>V</i><sub>cmax</sub>), the maximum electron transport rate (<i>J</i><sub>max</sub>) and the rate of triose phosphate utilisation (TPU) were significantly downregulated by <i>e</i>[CO<sub>2</sub>] from the first to the second generation, but recovered in the third generation; whereas at high N levels, photosynthetic acclimation was diminished with the progress of generations, with <i>V</i><sub>cmax</sub>, <i>J</i><sub>max</sub> and TPU increased under <i>e</i>[CO<sub>2</sub>] in the third generation. These results suggest that intergenerational adaptation could alleviate the <i>e</i>[CO<sub>2</sub>]-induced reduction of the photosynthetic capacity, but plants with different N status responded differently to adapt to the long-term exposure to <i>e</i>[CO<sub>2</sub>]. Among the five cultivars, 325Jimai showed a better photosynthetic performance under <i>e</i>[CO<sub>2</sub>] over the three generations, while 02-1Shiluan appeared to be more inhibited by CO<sub>2</sub> elevation in the long term conditions. These findings provide new insights for breeding strategies in the future CO<sub>2</sub>-enriched environments.</p>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jac.12722","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agronomy and Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jac.12722","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The responses of leaf gas exchange of wheat (Triticum aestivum L.) to elevated atmospheric CO2 concentration (e[CO2]) were often investigated within a single generation, while the long-term acclimation of photosynthesis to growth in e[CO2] over multiple generations has not been systematically studied. Here, five wheat cultivars were grown under either ambient (a[CO2], 400 ppm) or elevated (e[CO2], 800 ppm) CO2 concentration for three consecutive generations (G1 to G3) with two N-fertilisation levels (1N–1 g N pot−1 and 2N–2 g N pot−1) in climate-controlled greenhouses. Leaf gas exchange was determined in each generation of plants under different treatments. It was found that at both N levels, e[CO2] stimulated photosynthetic rate while reducing stomatal conductance, transpiration rate and leaf N concentration, resulting in an enhanced water use efficiency and photosynthetic N use efficiency. The N level modulated the intergenerational responses of photosynthetic capacity to e[CO2]; under low N supply, the maximum carboxylation rate (Vcmax), the maximum electron transport rate (Jmax) and the rate of triose phosphate utilisation (TPU) were significantly downregulated by e[CO2] from the first to the second generation, but recovered in the third generation; whereas at high N levels, photosynthetic acclimation was diminished with the progress of generations, with Vcmax, Jmax and TPU increased under e[CO2] in the third generation. These results suggest that intergenerational adaptation could alleviate the e[CO2]-induced reduction of the photosynthetic capacity, but plants with different N status responded differently to adapt to the long-term exposure to e[CO2]. Among the five cultivars, 325Jimai showed a better photosynthetic performance under e[CO2] over the three generations, while 02-1Shiluan appeared to be more inhibited by CO2 elevation in the long term conditions. These findings provide new insights for breeding strategies in the future CO2-enriched environments.
期刊介绍:
The effects of stress on crop production of agricultural cultivated plants will grow to paramount importance in the 21st century, and the Journal of Agronomy and Crop Science aims to assist in understanding these challenges. In this context, stress refers to extreme conditions under which crops and forages grow. The journal publishes original papers and reviews on the general and special science of abiotic plant stress. Specific topics include: drought, including water-use efficiency, such as salinity, alkaline and acidic stress, extreme temperatures since heat, cold and chilling stress limit the cultivation of crops, flooding and oxidative stress, and means of restricting them. Special attention is on research which have the topic of narrowing the yield gap. The Journal will give preference to field research and studies on plant stress highlighting these subsections. Particular regard is given to application-oriented basic research and applied research. The application of the scientific principles of agricultural crop experimentation is an essential prerequisite for the publication. Studies based on field experiments must show that they have been repeated (at least three times) on the same organism or have been conducted on several different varieties.