Sangbin Lee, Jaehyun Hong, Joonho Kang, Junjeong Park, Jaesung Lim, Taeho Lee, Min Seok Jang, Haejun Chung
{"title":"Inverse design of color routers in CMOS image sensors: toward minimizing interpixel crosstalk","authors":"Sangbin Lee, Jaehyun Hong, Joonho Kang, Junjeong Park, Jaesung Lim, Taeho Lee, Min Seok Jang, Haejun Chung","doi":"10.1515/nanoph-2024-0269","DOIUrl":null,"url":null,"abstract":"Over the past decade, significant advancements in high-resolution imaging technology have been driven by the miniaturization of pixels within image sensors. However, this reduction in pixel size to submicrometer dimensions has led to decreased efficiency in color filters and microlens arrays. The development of color routers that operate at visible wavelengths presents a promising avenue for further miniaturization. Despite this, existing color routers often encounter severe interpixel crosstalk, around 70 %, due to the reliance on periodic boundary conditions. Here, we present interpixel crosstalk-minimized color routers that achieve an unprecedented in-pixel optical efficiency of 87.2 % and significantly reduce interpixel crosstalk to 2.6 %. The color routers are designed through adjoint optimization, incorporating customized incident waves to minimize interpixel crosstalks. Our findings suggest that our color router design surpasses existing color routing techniques in terms of in-pixel optical efficiency, representing a crucial step forward in the push toward commercializing the next generation of solid-state image sensors.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"62 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0269","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past decade, significant advancements in high-resolution imaging technology have been driven by the miniaturization of pixels within image sensors. However, this reduction in pixel size to submicrometer dimensions has led to decreased efficiency in color filters and microlens arrays. The development of color routers that operate at visible wavelengths presents a promising avenue for further miniaturization. Despite this, existing color routers often encounter severe interpixel crosstalk, around 70 %, due to the reliance on periodic boundary conditions. Here, we present interpixel crosstalk-minimized color routers that achieve an unprecedented in-pixel optical efficiency of 87.2 % and significantly reduce interpixel crosstalk to 2.6 %. The color routers are designed through adjoint optimization, incorporating customized incident waves to minimize interpixel crosstalks. Our findings suggest that our color router design surpasses existing color routing techniques in terms of in-pixel optical efficiency, representing a crucial step forward in the push toward commercializing the next generation of solid-state image sensors.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.