Pub Date : 2025-12-16DOI: 10.1515/nanoph-2025-0393
Viet Anh Nguyen, Hung Son Nguyen, Zhiyi Yuan, Dung Xuan Nguyen, Cuong Dang, Son Tung Ha, Xavier Letartre, Quynh Le-Van, Hai Son Nguyen
We develop a generalized non-Hermitian Hamiltonian formalism for guided resonances in photonic crystal slabs, derived directly from Maxwell’s equations through a systematic guided-mode expansion. By expanding the electromagnetic fields over the complete mode basis of an unpatterned slab and systematically integrating out radiative Fabry–Pérot channels, we obtain the analytical operator structure of the Hamiltonian, which treats guided-mode coupling and radiation losses on equal footing. The resulting Hamiltonian provides explicit expressions for both dispersive and radiative coupling terms in terms of modal overlap integrals and Fourier components of the permittivity modulation. For specific geometries, the Hamiltonian coefficients can be extracted from full-wave simulations, enabling accurate modeling without phenomenological assumptions. As a case study, we investigate hexagonal lattices with both preserved and broken C6 symmetry, demonstrating predictive agreement for complex band structures, near-field distributions, and far-field polarization patterns. In particular, the formalism reproduces symmetry-protected bound states in the continuum (BICs) at the Γ point, accidental off-Γ BICs near the Γ point, and the emergence of chiral exceptional points (EPs). It also captures the tunable behavior of eigenmodes near the K point, including Dirac-point shifts and the emergence of quasi-BICs or bandgap openings, depending on the nature of C6 symmetry breaking. We further demonstrate in the Appendix that the same formalism extends naturally to other symmetry classes, including C2 (1D grating) and C4 (square lattice) photonic crystal slabs. This approach enables predictive and efficient modeling of complex photonic resonances, revealing their topological and symmetry-protected characteristics in non-Hermitian systems.
{"title":"Generalized non-Hermitian Hamiltonian for guided resonances in photonic crystal slabs","authors":"Viet Anh Nguyen, Hung Son Nguyen, Zhiyi Yuan, Dung Xuan Nguyen, Cuong Dang, Son Tung Ha, Xavier Letartre, Quynh Le-Van, Hai Son Nguyen","doi":"10.1515/nanoph-2025-0393","DOIUrl":"https://doi.org/10.1515/nanoph-2025-0393","url":null,"abstract":"We develop a generalized non-Hermitian Hamiltonian formalism for guided resonances in photonic crystal slabs, derived directly from Maxwell’s equations through a systematic guided-mode expansion. By expanding the electromagnetic fields over the complete mode basis of an unpatterned slab and systematically integrating out radiative Fabry–Pérot channels, we obtain the analytical operator structure of the Hamiltonian, which treats guided-mode coupling and radiation losses on equal footing. The resulting Hamiltonian provides explicit expressions for both dispersive and radiative coupling terms in terms of modal overlap integrals and Fourier components of the permittivity modulation. For specific geometries, the Hamiltonian coefficients can be extracted from full-wave simulations, enabling accurate modeling without phenomenological assumptions. As a case study, we investigate hexagonal lattices with both preserved and broken <jats:italic>C</jats:italic> <jats:sub>6</jats:sub> symmetry, demonstrating predictive agreement for complex band structures, near-field distributions, and far-field polarization patterns. In particular, the formalism reproduces symmetry-protected bound states in the continuum (BICs) at the Γ point, accidental off-Γ BICs near the Γ point, and the emergence of chiral exceptional points (EPs). It also captures the tunable behavior of eigenmodes near the <jats:italic>K</jats:italic> point, including Dirac-point shifts and the emergence of quasi-BICs or bandgap openings, depending on the nature of <jats:italic>C</jats:italic> <jats:sub>6</jats:sub> symmetry breaking. We further demonstrate in the Appendix that the same formalism extends naturally to other symmetry classes, including <jats:italic>C</jats:italic> <jats:sub>2</jats:sub> (1D grating) and <jats:italic>C</jats:italic> <jats:sub>4</jats:sub> (square lattice) photonic crystal slabs. This approach enables predictive and efficient modeling of complex photonic resonances, revealing their topological and symmetry-protected characteristics in non-Hermitian systems.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"66 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145760063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Modern technological evolution witnesses a fast-paced progress in the design, science, and technology of light-driven micro/nanomachines in the recent past. These micromachines have found enormous applications as micro/nanoscale manipulators, micromachined space exploration components, nano-sized cell positioning and control, and micro/nanorobots for drug delivery to name a few. This is not only due to their smaller size but also due to an ever-demanding necessity of micro/nanoscale functionalities with touch-free optimum control incorporating features such as propulsion, self-powered and controlled activation, energy efficiency, intelligence, navigation, and tracking. It also motivates one for biomimicking the functionalities of several living organisms to mold the ideas into micro/nanorobots to understand their properties and the underlying physics. Incorporating the magical functionalities enabled by nano/micro photonics answer many a challenge while they also open a wide range of possibilities ahead. Here, we present light-driven micro/nanorobots (µn-Bots) whose robotic features and functionalities are envisaged to have potential applications in medicine, industry, rescue, and strategic deterrence, pertaining to all walks of life and spectrums. After giving a comparative as well as the state of art outline on advances on the diverse technological innovations of µn-Bots in general, we comprehensively go through the light-driven micro/nanorobot designs and explore their functionalities, materials, and micro/nanofabrication techniques concerning their recent advances and multifaceted applications. On the other hand, we also give an analysis on the performance matrix of the reported light-driven micro/nanorobots explicitly studied in the recent past and give an outlook on the future roadmap and trends.
{"title":"Light-driven micro/nanobots","authors":"Rigvendra Kumar Vardhan, Manish Kumar, Jolly Xavier","doi":"10.1515/nanoph-2025-0152","DOIUrl":"https://doi.org/10.1515/nanoph-2025-0152","url":null,"abstract":"Modern technological evolution witnesses a fast-paced progress in the design, science, and technology of light-driven micro/nanomachines in the recent past. These micromachines have found enormous applications as micro/nanoscale manipulators, micromachined space exploration components, nano-sized cell positioning and control, and micro/nanorobots for drug delivery to name a few. This is not only due to their smaller size but also due to an ever-demanding necessity of micro/nanoscale functionalities with touch-free optimum control incorporating features such as propulsion, self-powered and controlled activation, energy efficiency, intelligence, navigation, and tracking. It also motivates one for biomimicking the functionalities of several living organisms to mold the ideas into micro/nanorobots to understand their properties and the underlying physics. Incorporating the magical functionalities enabled by nano/micro photonics answer many a challenge while they also open a wide range of possibilities ahead. Here, we present light-driven micro/nanorobots (µn-Bots) whose robotic features and functionalities are envisaged to have potential applications in medicine, industry, rescue, and strategic deterrence, pertaining to all walks of life and spectrums. After giving a comparative as well as the state of art outline on advances on the diverse technological innovations of µn-Bots in general, we comprehensively go through the light-driven micro/nanorobot designs and explore their functionalities, materials, and micro/nanofabrication techniques concerning their recent advances and multifaceted applications. On the other hand, we also give an analysis on the performance matrix of the reported light-driven micro/nanorobots explicitly studied in the recent past and give an outlook on the future roadmap and trends.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"29 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145759829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-15DOI: 10.1515/nanoph-2025-0234
Meicheng Fu, Huaqing Qiu, Hongyu Zhang, Xin Chen, Junli Qi, Yi Zhang, Yao Xu, Siyu Liu, Nan Gu, Hongtao Yu, Wenjun Yi, Xiujian Li, Xiaowei Guan
Conventional photonic integrated circuits (PICs) are fundamentally limited by single-wavelength-band operation. To transcend this barrier, we introduce a multiple-wavelength-band platform using a 2.5D integration scheme that monolithically combines silicon and silicon nitride waveguides side-by-side on a single chip. This architecture natively supports simultaneous 850 nm and 1,550 nm transmission while eliminating key limitations of 3D integration such as chemical-mechanical polishing and fixed coupling gaps. As a critical demonstration, we realize an all-optical modulator where 850 nm pump light controls a 1,550 nm signal in a silicon microring resonator, achieving a record-high modulation efficiency of −0.023 nm/mW and 93 % depth – surpassing existing schemes. This work establishes a scalable pathway beyond single-band PICs, opening new frontiers in programmable photonics and on-chip signal processing, etc.
{"title":"Demonstration of multiple-wavelength-band photonic integrated circuits using a silicon and silicon nitride 2.5D integration method","authors":"Meicheng Fu, Huaqing Qiu, Hongyu Zhang, Xin Chen, Junli Qi, Yi Zhang, Yao Xu, Siyu Liu, Nan Gu, Hongtao Yu, Wenjun Yi, Xiujian Li, Xiaowei Guan","doi":"10.1515/nanoph-2025-0234","DOIUrl":"https://doi.org/10.1515/nanoph-2025-0234","url":null,"abstract":"Conventional photonic integrated circuits (PICs) are fundamentally limited by single-wavelength-band operation. To transcend this barrier, we introduce a multiple-wavelength-band platform using a 2.5D integration scheme that monolithically combines silicon and silicon nitride waveguides side-by-side on a single chip. This architecture natively supports simultaneous 850 nm and 1,550 nm transmission while eliminating key limitations of 3D integration such as chemical-mechanical polishing and fixed coupling gaps. As a critical demonstration, we realize an all-optical modulator where 850 nm pump light controls a 1,550 nm signal in a silicon microring resonator, achieving a record-high modulation efficiency of −0.023 nm/mW and 93 % depth – surpassing existing schemes. This work establishes a scalable pathway beyond single-band PICs, opening new frontiers in programmable photonics and on-chip signal processing, etc.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"188 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145753086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photonic crystals (PhCs) have demonstrated great potential for use in integrated photonic systems. However, traditional design methods often struggle with low efficiency and limited flexibility. While deep learning approaches offer innovative solutions for the inverse design, existing generative models like generative adversarial network and variational autoencoders still face challenges such as training instability or excessive noise. Here, a novel generative design framework based on the diffusion model is presented to achieve the inverse design of high-precision and customized refraction structures. A comprehensive dataset consisting of operating frequency, refracted angles and corresponding structure patterns is constructed by calculating the equifrequency contours of various PhCs at a resolution of 64 × 64. Based on this dataset, customized PhC structures are successfully generated by using a diffusion model combined with the U-Net model. This design can predict cell patterns with allowable incident and refraction angles ranging from 0°∼80° and −80°∼80°, respectively. And if the types of structures in the dataset are increased, the solution space can be further expanded. A normalized design approach ensures adaptability to multi-scale scenarios. Finite-difference time-domain simulations and numerical analysis indicate that 85 % of the 1000 tested refracted angle errors measured by L2-norm are below 0.1. Such strong correlation between targets and simulated results demonstrates the high stability and precision of our diffusion model-based approach, which may provide a promising avenue for the automated inverse design of photonic devices.
{"title":"Diffusion model-based inverse design of photonic crystals for customized refraction","authors":"Ruotian Lin, Cheng Zhang, Wangqi Mao, Jiahao Ge, Hongxing Dong, Long Zhang","doi":"10.1515/nanoph-2025-0499","DOIUrl":"https://doi.org/10.1515/nanoph-2025-0499","url":null,"abstract":"Photonic crystals (PhCs) have demonstrated great potential for use in integrated photonic systems. However, traditional design methods often struggle with low efficiency and limited flexibility. While deep learning approaches offer innovative solutions for the inverse design, existing generative models like generative adversarial network and variational autoencoders still face challenges such as training instability or excessive noise. Here, a novel generative design framework based on the diffusion model is presented to achieve the inverse design of high-precision and customized refraction structures. A comprehensive dataset consisting of operating frequency, refracted angles and corresponding structure patterns is constructed by calculating the equifrequency contours of various PhCs at a resolution of 64 × 64. Based on this dataset, customized PhC structures are successfully generated by using a diffusion model combined with the U-Net model. This design can predict cell patterns with allowable incident and refraction angles ranging from 0°∼80° and −80°∼80°, respectively. And if the types of structures in the dataset are increased, the solution space can be further expanded. A normalized design approach ensures adaptability to multi-scale scenarios. Finite-difference time-domain simulations and numerical analysis indicate that 85 % of the 1000 tested refracted angle errors measured by L2-norm are below 0.1. Such strong correlation between targets and simulated results demonstrates the high stability and precision of our diffusion model-based approach, which may provide a promising avenue for the automated inverse design of photonic devices.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"8 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145759834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-12DOI: 10.1515/nanoph-2025-0514
Gabriele Cavanna, Hidehisa Taketani, Hikaru Watanabe, Da Pan, Anna Honda, Daiki Oshima, Takeshi Kato, Masakazu Matsubara
Spin currents – flows of spin angular momentum without net charge – are central to next-generation spintronic technologies but remain difficult to generate and control efficiently. Magnetic metamaterials provide a powerful platform, as engineered structures allow symmetry design and tailored light–matter interactions. Here, we demonstrate that lateral scaling of triangular-hole Co/Pt magnetic metamaterials exerts a strong, nonlinear influence on spin-current generation via the photogalvanic and magneto-photogalvanic effects. By systematically varying the pattern size, we observe unexpected behaviors: sign reversals, and even complete suppression of photocurrents at specific wavelengths. These phenomena reveal an intimate link between optical resonance conditions and spin current generation. Our findings establish metamaterial geometry as a new degree of freedom for engineering spin currents, offering dynamic tunability of magnitude, and sign – an essential step toward tunable, optically controlled spintronic devices.
{"title":"Scaling-dependent tunability of spin-driven photocurrents in magnetic metamaterials","authors":"Gabriele Cavanna, Hidehisa Taketani, Hikaru Watanabe, Da Pan, Anna Honda, Daiki Oshima, Takeshi Kato, Masakazu Matsubara","doi":"10.1515/nanoph-2025-0514","DOIUrl":"https://doi.org/10.1515/nanoph-2025-0514","url":null,"abstract":"Spin currents – flows of spin angular momentum without net charge – are central to next-generation spintronic technologies but remain difficult to generate and control efficiently. Magnetic metamaterials provide a powerful platform, as engineered structures allow symmetry design and tailored light–matter interactions. Here, we demonstrate that lateral scaling of triangular-hole Co/Pt magnetic metamaterials exerts a strong, nonlinear influence on spin-current generation via the photogalvanic and magneto-photogalvanic effects. By systematically varying the pattern size, we observe unexpected behaviors: sign reversals, and even complete suppression of photocurrents at specific wavelengths. These phenomena reveal an intimate link between optical resonance conditions and spin current generation. Our findings establish metamaterial geometry as a new degree of freedom for engineering spin currents, offering dynamic tunability of magnitude, and sign – an essential step toward tunable, optically controlled spintronic devices.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"8 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145730935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-11DOI: 10.1515/nanoph-2025-0439
Robert Parsons, Alexander Oh, James Robinson, Songli Wang, Michael Cullen, Kaylx Jang, Aneek James, Yuyang Wang, Keren Bergman
AI/ML compute clusters are driving unprecedented bandwidth demands at the package boundary, motivating co-packaged integrated photonics closely co-located with the compute unit. We present a scalable silicon-photonics transceiver platform and a measurement-driven design methodology that together enable dense, energy-efficient DWDM links suitable for in-socket integration. Automated wafer-scale probing on 300 mm active photonic wafers extracts waveguide and resonator statistics using index fitting and comprehensive device characterization. The resulting wafer-scale measurements highlight design points such as wider robust waveguides, whispering gallery mode resonators, and thermally efficient undercut devices, that reduce required thermal tuning power and tighten insertion loss distributions. We propagate the measured distributions through a system model via large-scale Monte Carlo simulations to derive realistic link margins and source power targets. Together, the scalable architecture and wafer-scale measurement-informed design process offer a practical path to high-bandwidth, low energy consumption DWDM links with robust yield.
{"title":"Foundry-enabled wafer-scale characterization and modeling of silicon photonic DWDM links","authors":"Robert Parsons, Alexander Oh, James Robinson, Songli Wang, Michael Cullen, Kaylx Jang, Aneek James, Yuyang Wang, Keren Bergman","doi":"10.1515/nanoph-2025-0439","DOIUrl":"https://doi.org/10.1515/nanoph-2025-0439","url":null,"abstract":"AI/ML compute clusters are driving unprecedented bandwidth demands at the package boundary, motivating co-packaged integrated photonics closely co-located with the compute unit. We present a scalable silicon-photonics transceiver platform and a measurement-driven design methodology that together enable dense, energy-efficient DWDM links suitable for in-socket integration. Automated wafer-scale probing on 300 mm active photonic wafers extracts waveguide and resonator statistics using index fitting and comprehensive device characterization. The resulting wafer-scale measurements highlight design points such as wider robust waveguides, whispering gallery mode resonators, and thermally efficient undercut devices, that reduce required thermal tuning power and tighten insertion loss distributions. We propagate the measured distributions through a system model via large-scale Monte Carlo simulations to derive realistic link margins and source power targets. Together, the scalable architecture and wafer-scale measurement-informed design process offer a practical path to high-bandwidth, low energy consumption DWDM links with robust yield.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"151 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145730936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-10DOI: 10.1515/nanoph-2025-0508
Wangke Yu, Yijie Shen
Spatiotemporal (ST) wave packets constitute a broad class of optical pulses whose spatial and temporal degrees of freedom cannot be treated independently. Such space-time non-separability can induce exotic physical effects such as non-diffraction, non-transverse waves, and sub or superluminal propagation. Here, a higher-order generalised family of ST modes is presented, where modal orders are proposed to enrich their ST structural complexity, analogous to spatial higher-order Gaussian modes. This framework also incorporates spatial eigenmodes and typical ST pulses (e.g., toroidal light pulses) as elementary members. The modal orders are strongly coupled to the Gouy phase, which can unveil anomalous ST Gouy-phase dynamics, including ultrafast cycle-switching evolution, ST self-healing, and sub/super-luminal propagation. We further introduce a stretch parameter that stretches the temporal envelope while keeping the Gouy-phase coefficient unchanged. This stretch invariance decouples pulse duration from modal order, allowing us to tune the few-cycle width without shifting temporal-revival positions or altering the phase/group-velocity laws. Moreover, an approach to analysing the phase velocity and group velocity of the higher-order ST modes is proposed to quantitatively characterise the sub/super-luminal effects. The method is universal for a larger group of complex structured pulses, laying the basis for both fundamental physics and advanced applications in ultrafast optics and structured light.
{"title":"Higher-order spatiotemporal wave packets with Gouy phase dynamics","authors":"Wangke Yu, Yijie Shen","doi":"10.1515/nanoph-2025-0508","DOIUrl":"https://doi.org/10.1515/nanoph-2025-0508","url":null,"abstract":"Spatiotemporal (ST) wave packets constitute a broad class of optical pulses whose spatial and temporal degrees of freedom cannot be treated independently. Such space-time non-separability can induce exotic physical effects such as non-diffraction, non-transverse waves, and sub or superluminal propagation. Here, a higher-order generalised family of ST modes is presented, where modal orders are proposed to enrich their ST structural complexity, analogous to spatial higher-order Gaussian modes. This framework also incorporates spatial eigenmodes and typical ST pulses (e.g., toroidal light pulses) as elementary members. The modal orders are strongly coupled to the Gouy phase, which can unveil anomalous ST Gouy-phase dynamics, including ultrafast cycle-switching evolution, ST self-healing, and sub/super-luminal propagation. We further introduce a stretch parameter that stretches the temporal envelope while keeping the Gouy-phase coefficient unchanged. This stretch invariance decouples pulse duration from modal order, allowing us to tune the few-cycle width without shifting temporal-revival positions or altering the phase/group-velocity laws. Moreover, an approach to analysing the phase velocity and group velocity of the higher-order ST modes is proposed to quantitatively characterise the sub/super-luminal effects. The method is universal for a larger group of complex structured pulses, laying the basis for both fundamental physics and advanced applications in ultrafast optics and structured light.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"39 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145711406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-10DOI: 10.1515/nanoph-2025-0510
Xiaomin Lv, Ze Wang, Tianyu Xu, Chen Yang, Xing Jin, Binbin Nie, Du Qian, Yanwu Liu, Kaixuan Zhu, Bo Ni, Qihuang Gong, Fang Bo, Qi-Fan Yang
Thin-film lithium niobate (TFLN) has enabled efficient on-chip electro-optic modulation and frequency conversion for information processing and precision measurement. Extending these capabilities with optical frequency combs unlocks massively parallel operations and coherent optical-to-microwave transduction, which are achievable in TFLN microresonators via Kerr microcombs. However, fully integrated Kerr microcombs directly driven by semiconductor lasers remain elusive, which has delayed integration of these technologies. Here, we demonstrate electrically pumped TFLN Kerr microcombs without optical amplification. With optimized laser-to-chip coupling and optical quality factors, we generate soliton microcombs at a 200 GHz repetition frequency with an optical span of 180 nm using only 25 mW of pump power. Moreover, self-injection locking enables turnkey initiation and substantially narrows the laser linewidth. Our work provides integrated comb sources for TFLN-based communicational, computational, and metrological applications.
{"title":"Electrically pumped soliton microcombs on thin-film lithium niobate","authors":"Xiaomin Lv, Ze Wang, Tianyu Xu, Chen Yang, Xing Jin, Binbin Nie, Du Qian, Yanwu Liu, Kaixuan Zhu, Bo Ni, Qihuang Gong, Fang Bo, Qi-Fan Yang","doi":"10.1515/nanoph-2025-0510","DOIUrl":"https://doi.org/10.1515/nanoph-2025-0510","url":null,"abstract":"Thin-film lithium niobate (TFLN) has enabled efficient on-chip electro-optic modulation and frequency conversion for information processing and precision measurement. Extending these capabilities with optical frequency combs unlocks massively parallel operations and coherent optical-to-microwave transduction, which are achievable in TFLN microresonators via Kerr microcombs. However, fully integrated Kerr microcombs directly driven by semiconductor lasers remain elusive, which has delayed integration of these technologies. Here, we demonstrate electrically pumped TFLN Kerr microcombs without optical amplification. With optimized laser-to-chip coupling and optical quality factors, we generate soliton microcombs at a 200 GHz repetition frequency with an optical span of 180 nm using only 25 mW of pump power. Moreover, self-injection locking enables turnkey initiation and substantially narrows the laser linewidth. Our work provides integrated comb sources for TFLN-based communicational, computational, and metrological applications.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"28 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145711407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-09DOI: 10.1515/nanoph-2025-0498
Hyungchul Park, Beomjoon Chae, Hyunsoo Jang, Sunkyu Yu, Xianji Piao
Exploiting alternative physical dimensions beyond the spatial domain has been intensively explored to improve the scalability in photonic computing. One approach leverages dynamical systems for time-domain computation, enabling universal and reconfigurable unitary operations. Although this method yields O ( N ) scaling in both device footprint and gate count, the required computation time increases by O ( N2 ), which hinders practical implementation due to limitations in quality factors and modulation speeds of optical elements. Here, we propose time-parallelized photonic lattices that achieve O ( N ) time scalability while preserving the O ( N ) spatial scaling. We devise a pseudospinor buffer operation that temporally stores the optical information, thereby enabling parallel unitary computation. The proposed method not only mitigates the requirement for high-quality factors but also provides robustness against a broad range of defects, demonstrating the feasibility of time-domain photonic computation.
{"title":"Scalable unitary computing using time-parallelized photonic lattices","authors":"Hyungchul Park, Beomjoon Chae, Hyunsoo Jang, Sunkyu Yu, Xianji Piao","doi":"10.1515/nanoph-2025-0498","DOIUrl":"https://doi.org/10.1515/nanoph-2025-0498","url":null,"abstract":"Exploiting alternative physical dimensions beyond the spatial domain has been intensively explored to improve the scalability in photonic computing. One approach leverages dynamical systems for time-domain computation, enabling universal and reconfigurable unitary operations. Although this method yields <jats:italic>O</jats:italic> ( <jats:italic>N</jats:italic> ) scaling in both device footprint and gate count, the required computation time increases by <jats:italic>O</jats:italic> ( <jats:italic>N</jats:italic> <jats:sup>2</jats:sup> ), which hinders practical implementation due to limitations in quality factors and modulation speeds of optical elements. Here, we propose time-parallelized photonic lattices that achieve <jats:italic>O</jats:italic> ( <jats:italic>N</jats:italic> ) time scalability while preserving the <jats:italic>O</jats:italic> ( <jats:italic>N</jats:italic> ) spatial scaling. We devise a pseudospinor buffer operation that temporally stores the optical information, thereby enabling parallel unitary computation. The proposed method not only mitigates the requirement for high-quality factors but also provides robustness against a broad range of defects, demonstrating the feasibility of time-domain photonic computation.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"20 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145703990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-09DOI: 10.1515/nanoph-2025-2000
Takuo Tanaka, Wakana Kubo
{"title":"Editorial on special issue “The 11th International Conference on Surface Plasmon Photonics (SPP11)”","authors":"Takuo Tanaka, Wakana Kubo","doi":"10.1515/nanoph-2025-2000","DOIUrl":"https://doi.org/10.1515/nanoph-2025-2000","url":null,"abstract":"","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"7 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145711409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}