首页 > 最新文献

Nanophotonics最新文献

英文 中文
Optical levitation of Janus particles within focused cylindrical vector beams
IF 7.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-04-25 DOI: 10.1515/nanoph-2024-0774
Alessandro Magazzù, Iryna Kasianiuk, Denis Kasyanyuk, Agnese Callegari, Giovanni Volpe, Onofrio M. Maragò, Luca Biancofiore
The confinement and manipulation of Janus particles have recently garnered significant interest due to their potential applications in fields such as nanotechnology and biophysics, where, under specific circumstances, they can act as microengines and drug carriers. However, the dynamics of Janus particles mostly rely on chemical reactions or thermal gradients, limiting their precision application. To tackle these limitations, we propose the 3D manipulation of Janus particles using focused cylindrical vector beams with a doughnut shaped intensity profile above the focal spot. In particular, we study the behaviour, orientation and manipulation of different highly reflective Janus particles composed of silica or polystyrene with a gold cap in the presence of optical potentials generated by focused cylindrical vector beams. Where the radiation pressure predominantly affects the gold cap rather than the bare particle body of the particle. We demonstrated the potential of the proposed levitation technique for controlling a wide range of Janus particles and real-life complex objects with high reflectivity.
{"title":"Optical levitation of Janus particles within focused cylindrical vector beams","authors":"Alessandro Magazzù, Iryna Kasianiuk, Denis Kasyanyuk, Agnese Callegari, Giovanni Volpe, Onofrio M. Maragò, Luca Biancofiore","doi":"10.1515/nanoph-2024-0774","DOIUrl":"https://doi.org/10.1515/nanoph-2024-0774","url":null,"abstract":"The confinement and manipulation of Janus particles have recently garnered significant interest due to their potential applications in fields such as nanotechnology and biophysics, where, under specific circumstances, they can act as microengines and drug carriers. However, the dynamics of Janus particles mostly rely on chemical reactions or thermal gradients, limiting their precision application. To tackle these limitations, we propose the 3D manipulation of Janus particles using focused cylindrical vector beams with a doughnut shaped intensity profile above the focal spot. In particular, we study the behaviour, orientation and manipulation of different highly reflective Janus particles composed of silica or polystyrene with a gold cap in the presence of optical potentials generated by focused cylindrical vector beams. Where the radiation pressure predominantly affects the gold cap rather than the bare particle body of the particle. We demonstrated the potential of the proposed levitation technique for controlling a wide range of Janus particles and real-life complex objects with high reflectivity.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"74 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143872865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disordered plasmonic system with dense copper nano-island morphology
IF 7.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-04-24 DOI: 10.1515/nanoph-2024-0743
Tlek Tapani, Vincenzo Caligiuri, Yanqiu Zou, Andrea Griesi, Yurii P. Ivanov, Massimo Cuscunà, Gianluca Balestra, Haifeng Lin, Anastasiia Sapunova, Paolo Franceschini, Andrea Tognazzi, Costantino De Angelis, Giorgio Divitini, Riccardo Carzino, Hyunah Kwon, Peer Fischer, Roman Krahne, Nicolò Maccaferri, Denis Garoli
Dry synthesis is a highly versatile method for the fabrication of nanoporous metal films, since it enables easy and reproducible deposition of single or multi-layers of nanostructured materials that can find intriguing applications in plasmonics, photochemistry and photocatalysis, to name a few. Here, we extend the use of this methodology to the preparation of copper nano-islands that represent an affordable and versatile example of disordered plasmonic substrates. Although the island morphology is disordered, the high density of these nanostructures with large surface area results in a good homogeneity on a macroscale, which is beneficial for plasmonic applications such as bio-sensing and photo-catalysis. With cathodoluminescence and electron-energy-loss spectroscopies we confirm the nano-islands as sources of the local field enhancement and identify the plasmonic resonance bands in the visible and near-infrared spectral range. The decay dynamics of the plasmonic signal are slower in the nano-island as compared to bulk copper films, which can be rationalized by a reduced energy dissipation in the nano-island films. Our study demonstrates a robust and lithography-free fabrication pathway to obtain nanostructured plasmonic copper substrates that represent a highly versatile low-cost alternative for future applications ranging from sensing to photochemistry and photocatalysis.
{"title":"Disordered plasmonic system with dense copper nano-island morphology","authors":"Tlek Tapani, Vincenzo Caligiuri, Yanqiu Zou, Andrea Griesi, Yurii P. Ivanov, Massimo Cuscunà, Gianluca Balestra, Haifeng Lin, Anastasiia Sapunova, Paolo Franceschini, Andrea Tognazzi, Costantino De Angelis, Giorgio Divitini, Riccardo Carzino, Hyunah Kwon, Peer Fischer, Roman Krahne, Nicolò Maccaferri, Denis Garoli","doi":"10.1515/nanoph-2024-0743","DOIUrl":"https://doi.org/10.1515/nanoph-2024-0743","url":null,"abstract":"Dry synthesis is a highly versatile method for the fabrication of nanoporous metal films, since it enables easy and reproducible deposition of single or multi-layers of nanostructured materials that can find intriguing applications in plasmonics, photochemistry and photocatalysis, to name a few. Here, we extend the use of this methodology to the preparation of copper nano-islands that represent an affordable and versatile example of disordered plasmonic substrates. Although the island morphology is disordered, the high density of these nanostructures with large surface area results in a good homogeneity on a macroscale, which is beneficial for plasmonic applications such as bio-sensing and photo-catalysis. With cathodoluminescence and electron-energy-loss spectroscopies we confirm the nano-islands as sources of the local field enhancement and identify the plasmonic resonance bands in the visible and near-infrared spectral range. The decay dynamics of the plasmonic signal are slower in the nano-island as compared to bulk copper films, which can be rationalized by a reduced energy dissipation in the nano-island films. Our study demonstrates a robust and lithography-free fabrication pathway to obtain nanostructured plasmonic copper substrates that represent a highly versatile low-cost alternative for future applications ranging from sensing to photochemistry and photocatalysis.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"42 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143872883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-broadband and passive stabilization of ultrafast light sources by quantum light injection
IF 7.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-04-24 DOI: 10.1515/nanoph-2024-0634
Nicholas Rivera, Shiekh Zia Uddin, Jamison Sloan, Marin Soljačić
Nonlinear optical effects such as frequency conversion form the basis for many practical light sources. In a variety of settings, the performance of such sources is limited by quantum noise. In many nonlinear systems, this quantum noise gets strongly amplified, as a result of the large sensitivity of the nonlinear dynamics to changes in the initial conditions − a feature common to many nonlinear systems. Here, we develop a general theory of quantum noise resulting from nonlinear dynamics initiated by many-photon Gaussian quantum states. The theory provides guidelines to find the optimal quantum state to inject to maximally suppress the noise at the output. As a concrete example of the concept and theory, we consider the nonlinear optical phenomenon of supercontinuum generation by a femtosecond pulse, a famously noise-generating process, which is important in a range of applications in materials characterization and life science. By seeding supercontinuum generation with pulsed squeezed vacuum, one can achieve order-of-magnitude magnitude reduction of intensity and phase noise simultaneously, over a broad band of wavelengths, passively, and with no change in spectrum. The large magnitude and bandwidth of this effect is challenging to achieve by other means of stabilization, pointing to a promising approach for controlling quantum noise in a variety of nonlinear systems.
{"title":"Ultra-broadband and passive stabilization of ultrafast light sources by quantum light injection","authors":"Nicholas Rivera, Shiekh Zia Uddin, Jamison Sloan, Marin Soljačić","doi":"10.1515/nanoph-2024-0634","DOIUrl":"https://doi.org/10.1515/nanoph-2024-0634","url":null,"abstract":"Nonlinear optical effects such as frequency conversion form the basis for many practical light sources. In a variety of settings, the performance of such sources is limited by quantum noise. In many nonlinear systems, this quantum noise gets strongly amplified, as a result of the large sensitivity of the nonlinear dynamics to changes in the initial conditions − a feature common to many nonlinear systems. Here, we develop a general theory of quantum noise resulting from nonlinear dynamics initiated by many-photon Gaussian quantum states. The theory provides guidelines to find the optimal quantum state to inject to maximally suppress the noise at the output. As a concrete example of the concept and theory, we consider the nonlinear optical phenomenon of supercontinuum generation by a femtosecond pulse, a famously noise-generating process, which is important in a range of applications in materials characterization and life science. By seeding supercontinuum generation with pulsed squeezed vacuum, one can achieve order-of-magnitude magnitude reduction of intensity and phase noise simultaneously, over a broad band of wavelengths, passively, and with no change in spectrum. The large magnitude and bandwidth of this effect is challenging to achieve by other means of stabilization, pointing to a promising approach for controlling quantum noise in a variety of nonlinear systems.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"140 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143872884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological chiral-gain in a Berry dipole material
IF 7.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-04-24 DOI: 10.1515/nanoph-2024-0681
Filipa R. Prudêncio, Mário G. Silveirinha
Recent studies have shown that low-symmetry conductors under static electric bias offer a pathway to realize chiral gain, where the non-Hermitian optical response of the material is controlled by the spin angular momentum of the wave. In this work, we uncover the topological nature of chiral gain and demonstrate how a static electric bias induces topological bandgaps that support unidirectional edge states at the material boundaries. In our system, these topological edge states consistently exhibit dissipative properties. However, we show that, by operating outside the topological gap, the chiral gain can be leveraged to engineer boundary-confined lasing modes with orbital angular momentum locked to the orientation of the applied electric field. Our results open new possibilities for loss-compensated photonic waveguides, enabling advanced functionalities such as unidirectional, lossless edge-wave propagation and the generation of structured light with intrinsic orbital angular momentum.
{"title":"Topological chiral-gain in a Berry dipole material","authors":"Filipa R. Prudêncio, Mário G. Silveirinha","doi":"10.1515/nanoph-2024-0681","DOIUrl":"https://doi.org/10.1515/nanoph-2024-0681","url":null,"abstract":"Recent studies have shown that low-symmetry conductors under static electric bias offer a pathway to realize chiral gain, where the non-Hermitian optical response of the material is controlled by the spin angular momentum of the wave. In this work, we uncover the topological nature of chiral gain and demonstrate how a static electric bias induces topological bandgaps that support unidirectional edge states at the material boundaries. In our system, these topological edge states consistently exhibit dissipative properties. However, we show that, by operating outside the topological gap, the chiral gain can be leveraged to engineer boundary-confined lasing modes with orbital angular momentum locked to the orientation of the applied electric field. Our results open new possibilities for loss-compensated photonic waveguides, enabling advanced functionalities such as unidirectional, lossless edge-wave propagation and the generation of structured light with intrinsic orbital angular momentum.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"7 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143872866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Confocal polarization tomography of dielectric nanocavities
IF 7.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-04-23 DOI: 10.1515/nanoph-2024-0744
Frederik Schröder, Martin P. van Exter, Meng Xiong, George Kountouris, Martijn Wubs, Philip T. Kristensen, Nicolas Stenger
We employ polarization tomography to characterize the modal properties of a dielectric nanocavity with sub-wavelength mode confinement. Our analysis of reflection spectra shows that the Fano-lineshape depends strongly on the polarization in a confocal configuration, and that the lineshape can be transformed into a Lorentzian-like peak for a certain polarization. For this polarization setting, the background is almost fully suppressed in a finite range of frequencies. This enables us to identify another resonance that has not yet been experimentally reported for these nanocavities. Lastly, we use symmetry-forbidden polarizations and show that, surprisingly, the modal resonance features of the system remain visible.
{"title":"Confocal polarization tomography of dielectric nanocavities","authors":"Frederik Schröder, Martin P. van Exter, Meng Xiong, George Kountouris, Martijn Wubs, Philip T. Kristensen, Nicolas Stenger","doi":"10.1515/nanoph-2024-0744","DOIUrl":"https://doi.org/10.1515/nanoph-2024-0744","url":null,"abstract":"We employ polarization tomography to characterize the modal properties of a dielectric nanocavity with sub-wavelength mode confinement. Our analysis of reflection spectra shows that the Fano-lineshape depends strongly on the polarization in a confocal configuration, and that the lineshape can be transformed into a Lorentzian-like peak for a certain polarization. For this polarization setting, the background is almost fully suppressed in a finite range of frequencies. This enables us to identify another resonance that has not yet been experimentally reported for these nanocavities. Lastly, we use symmetry-forbidden polarizations and show that, surprisingly, the modal resonance features of the system remain visible.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"16 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143872885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compound meta-optics: there is plenty of room at the top
IF 7.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-04-23 DOI: 10.1515/nanoph-2024-0772
Ahmed H. Dorrah
Metasurfaces have been widely exploited in imaging and sensing, holography, light–matter interaction, and optical communications in free space and on chip, thanks to their CMOS compatibility, versatility and compact form. However, as this technology matured from novelty to performance, stringent requirements on diffraction efficiency, scalability, and complex light control have also emerged. For instance, the limited thickness of single-layer meta-optics poses fundamental constraints on dispersion engineering and lossless transmission over large-scale devices, whereas in-plane symmetry limits the polarization transformations that can be realized. Cascaded and multi-layer flat optics can alleviate these constraints, offering new possibilities for realizing high-efficiency devices, full polarization control, and achromatic response. In this perspective, recent advances in multi-layer metasurfaces including inherent challenges and opportunities will be discussed. Compound meta-optics hold the promise for enabling complex optical systems with enhanced performance and unprecedented functionality for a diverse set of applications in sensing, imaging, high-capacity communications, and beyond.
{"title":"Compound meta-optics: there is plenty of room at the top","authors":"Ahmed H. Dorrah","doi":"10.1515/nanoph-2024-0772","DOIUrl":"https://doi.org/10.1515/nanoph-2024-0772","url":null,"abstract":"Metasurfaces have been widely exploited in imaging and sensing, holography, light–matter interaction, and optical communications in free space and on chip, thanks to their CMOS compatibility, versatility and compact form. However, as this technology matured from novelty to performance, stringent requirements on diffraction efficiency, scalability, and complex light control have also emerged. For instance, the limited thickness of single-layer meta-optics poses fundamental constraints on dispersion engineering and lossless transmission over large-scale devices, whereas in-plane symmetry limits the polarization transformations that can be realized. Cascaded and multi-layer flat optics can alleviate these constraints, offering new possibilities for realizing high-efficiency devices, full polarization control, and achromatic response. In this perspective, recent advances in multi-layer metasurfaces including inherent challenges and opportunities will be discussed. Compound meta-optics hold the promise for enabling complex optical systems with enhanced performance and unprecedented functionality for a diverse set of applications in sensing, imaging, high-capacity communications, and beyond.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"27 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143872887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-linear bistability in pulsed optical traps
IF 7.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-04-23 DOI: 10.1515/nanoph-2025-0025
Alex J. Vernon, Francisco J. Rodríguez-Fotuño, Anatoly V. Zayats
Optical trapping, also known as optical tweezing or optical levitation, is a technique that uses highly focused laser beams to manipulate micro- and nanoscopic particles. In optical traps driven by high-energy pulses, material non-linearity can result in unusual opto-mechanical effects, such as displaced equilibrium points. However, existing theoretical models of non-linear optical force on small particles consider smooth material dependence on the incident field strength alone, and not the feedback between the particle permittivity and internal field strength, which is, in turn, a function of the permittivity. The hysteresis effects of optical bistability in pulsed optical traps, therefore, elude existing optical force models. Here, we investigate a bistable optical trap, set up by counter-propagating ultrashort pulses, in which the optical force exerted on a particle depends not only on the field at its current location but on the historic trajectory of the particle in the trap. The developed formalism will be important for designing optical traps and nanoparticle manipulation in pulsed field for various applications, including potentially time crystal demonstrations.
{"title":"Non-linear bistability in pulsed optical traps","authors":"Alex J. Vernon, Francisco J. Rodríguez-Fotuño, Anatoly V. Zayats","doi":"10.1515/nanoph-2025-0025","DOIUrl":"https://doi.org/10.1515/nanoph-2025-0025","url":null,"abstract":"Optical trapping, also known as optical tweezing or optical levitation, is a technique that uses highly focused laser beams to manipulate micro- and nanoscopic particles. In optical traps driven by high-energy pulses, material non-linearity can result in unusual opto-mechanical effects, such as displaced equilibrium points. However, existing theoretical models of non-linear optical force on small particles consider smooth material dependence on the incident field strength alone, and not the feedback between the particle permittivity and internal field strength, which is, in turn, a function of the permittivity. The hysteresis effects of optical bistability in pulsed optical traps, therefore, elude existing optical force models. Here, we investigate a bistable optical trap, set up by counter-propagating ultrashort pulses, in which the optical force exerted on a particle depends not only on the field at its current location but on the historic trajectory of the particle in the trap. The developed formalism will be important for designing optical traps and nanoparticle manipulation in pulsed field for various applications, including potentially time crystal demonstrations.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"53 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143872802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mid-infrared wavelength multiplexers on an InP platform
IF 7.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-04-23 DOI: 10.1515/nanoph-2024-0756
Kevin Zhang, Rudolf Mayer, Dominik Burghart, Gerhard Boehm, Mikhail A. Belkin
We demonstrate mid-infrared multiplexers based on evanescent couplers in In0.53Ga0.47As/InP ridge waveguides. Multiplexing of λ = 5.2 µm and λ = 8 µm input wavelengths in TM00 modes to a single TM00 output was achieved with 0.7 dB insertion loss. The demonstrated multiplexing bandwidth is significantly broader than is achievable using typical arrayed waveguide gratings, while displaying comparable insertion loss. These devices will be essential toward the development of broadband multi-color mid-infrared photonic integrated circuits for multi-species gas sensing and multi-band mid-infrared free-space communications.
{"title":"Mid-infrared wavelength multiplexers on an InP platform","authors":"Kevin Zhang, Rudolf Mayer, Dominik Burghart, Gerhard Boehm, Mikhail A. Belkin","doi":"10.1515/nanoph-2024-0756","DOIUrl":"https://doi.org/10.1515/nanoph-2024-0756","url":null,"abstract":"We demonstrate mid-infrared multiplexers based on evanescent couplers in In<jats:sub>0.53</jats:sub>Ga<jats:sub>0.47</jats:sub>As/InP ridge waveguides. Multiplexing of <jats:italic>λ</jats:italic> = 5.2 µm and <jats:italic>λ</jats:italic> = 8 µm input wavelengths in TM<jats:sub>00</jats:sub> modes to a single TM<jats:sub>00</jats:sub> output was achieved with 0.7 dB insertion loss. The demonstrated multiplexing bandwidth is significantly broader than is achievable using typical arrayed waveguide gratings, while displaying comparable insertion loss. These devices will be essential toward the development of broadband multi-color mid-infrared photonic integrated circuits for multi-species gas sensing and multi-band mid-infrared free-space communications.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"69 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143872886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monoclinic nonlinear metasurfaces for resonant engineering of polarization states
IF 7.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-04-22 DOI: 10.1515/nanoph-2025-0019
Ivan Toftul, Dhruv Hariharan, Pavel Tonkaev, Fangxing Lai, Qinghai Song, Yuri Kivshar
Polarization is a fundamental property of light that can be engineered and controlled efficiently with optical metasurfaces. Here, we employ chiral metasurfaces with monoclinic lattice geometry and achiral meta-atoms for resonant engineering of polarization states of light. We demonstrate, both theoretically and experimentally, that a monoclinic metasurface can convert linearly polarized light into elliptically polarized light not only in the linear regime but also in the nonlinear regime with the resonant generation of the third-harmonic field. We reveal that the ellipticity of the fundamental and higher-harmonic fields depends critically on the angle of the input linear polarization, and the effective chiral response of a monoclinic lattice plays a significant role in the polarization conversion.
{"title":"Monoclinic nonlinear metasurfaces for resonant engineering of polarization states","authors":"Ivan Toftul, Dhruv Hariharan, Pavel Tonkaev, Fangxing Lai, Qinghai Song, Yuri Kivshar","doi":"10.1515/nanoph-2025-0019","DOIUrl":"https://doi.org/10.1515/nanoph-2025-0019","url":null,"abstract":"Polarization is a fundamental property of light that can be engineered and controlled efficiently with optical metasurfaces. Here, we employ <jats:italic>chiral metasurfaces</jats:italic> with monoclinic lattice geometry and achiral meta-atoms for resonant engineering of polarization states of light. We demonstrate, both theoretically and experimentally, that a monoclinic metasurface can convert linearly polarized light into elliptically polarized light not only in the linear regime but also in the nonlinear regime with the resonant generation of the third-harmonic field. We reveal that the ellipticity of the fundamental and higher-harmonic fields depends critically on the angle of the input linear polarization, and the effective chiral response of a monoclinic lattice plays a significant role in the polarization conversion.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"31 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chip-integrated polarization multiplexed metasurface for simultaneous generation of versatile terahertz vortices
IF 7.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-04-21 DOI: 10.1515/nanoph-2025-0091
Qianyun Zhang, Guibin Li, Liang Wu, Fan Yang, Zhen Yue, Chenglong Zheng, Yan Zhang, Li Li, Jianquan Yao
Terahertz vortex beams, carrying orbital angular momentum (OAM), are quite desirable for enhancing data transmission capability in telecommunication. However, it faces fundamental and technical challenges in a single metasurface to simultaneously generate orthogonal basis vortices with linear polarization (x- and y-polarity) and circular polarization (left- and right-handed polarity) under the orthogonal polarized light incident. Here, we proposed a chip-integrated all-dielectric metasurface in the terahertz regime, to demonstrate the simultaneous generation of four-channel orthogonal polarized vortex beams at various topological charges under the x- and y-polarized light incident. The polarization multiplexed metasurface was designed only with a propagation phase strategy, consisting of polarization-maintaining and polarization-conversion meta-atoms. Simultaneous control of polarization and topological charges in vortex beams was realized by properly arranging birefringent meta-atom arrays to induce additional phases of x- and y-polarization as customized, showing more degrees of freedom for carrying information. The experimental results are in good agreement with the simulations. Such a metasurface approach provides complete polarization bases for further synthesis of diverse polarization vortices required for huge-capacity communication.
{"title":"Chip-integrated polarization multiplexed metasurface for simultaneous generation of versatile terahertz vortices","authors":"Qianyun Zhang, Guibin Li, Liang Wu, Fan Yang, Zhen Yue, Chenglong Zheng, Yan Zhang, Li Li, Jianquan Yao","doi":"10.1515/nanoph-2025-0091","DOIUrl":"https://doi.org/10.1515/nanoph-2025-0091","url":null,"abstract":"Terahertz vortex beams, carrying orbital angular momentum (OAM), are quite desirable for enhancing data transmission capability in telecommunication. However, it faces fundamental and technical challenges in a single metasurface to simultaneously generate orthogonal basis vortices with linear polarization (<jats:italic>x</jats:italic>- and <jats:italic>y</jats:italic>-polarity) and circular polarization (left- and right-handed polarity) under the orthogonal polarized light incident. Here, we proposed a chip-integrated all-dielectric metasurface in the terahertz regime, to demonstrate the simultaneous generation of four-channel orthogonal polarized vortex beams at various topological charges under the <jats:italic>x</jats:italic>- and <jats:italic>y</jats:italic>-polarized light incident. The polarization multiplexed metasurface was designed only with a propagation phase strategy, consisting of polarization-maintaining and polarization-conversion meta-atoms. Simultaneous control of polarization and topological charges in vortex beams was realized by properly arranging birefringent meta-atom arrays to induce additional phases of <jats:italic>x</jats:italic>- and <jats:italic>y</jats:italic>-polarization as customized, showing more degrees of freedom for carrying information. The experimental results are in good agreement with the simulations. Such a metasurface approach provides complete polarization bases for further synthesis of diverse polarization vortices required for huge-capacity communication.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"64 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143857379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nanophotonics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1