Memristive circuits based on multilayer hexagonal boron nitride for millimetre-wave radiofrequency applications

IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Nature Electronics Pub Date : 2024-07-01 DOI:10.1038/s41928-024-01192-2
Sebastian Pazos, Yaqing Shen, Haoran Zhang, Jordi Verdú, Andrés Fontana, Wenwen Zheng, Yue Yuan, Osamah Alharbi, Yue Ping, Eloi Guerrero, Lluís Acosta, Pedro de Paco, Dimitra Psychogiou, Atif Shamim, Deji Akinwande, Mario Lanza
{"title":"Memristive circuits based on multilayer hexagonal boron nitride for millimetre-wave radiofrequency applications","authors":"Sebastian Pazos, Yaqing Shen, Haoran Zhang, Jordi Verdú, Andrés Fontana, Wenwen Zheng, Yue Yuan, Osamah Alharbi, Yue Ping, Eloi Guerrero, Lluís Acosta, Pedro de Paco, Dimitra Psychogiou, Atif Shamim, Deji Akinwande, Mario Lanza","doi":"10.1038/s41928-024-01192-2","DOIUrl":null,"url":null,"abstract":"Radiofrequency switches that drive or block high-frequency electromagnetic signals—typically, a few to tens of gigahertz—are essential components in modern communication devices. However, demand for higher data transmission rates requires radiofrequency switches capable of operating at frequencies beyond 100 GHz, which is challenging for current technologies. Here we report ambipolar memristive radiofrequency switches that are based on multilayer hexagonal boron nitride and can operate at frequencies up to 260 GHz. The ambipolar behaviour, which could help reduce peripheral hardware requirements, is due to a Joule-effect-assisted reset. We show switching in 21 devices with low-resistance states averaging 294 Ω and endurances of 2,000 cycles. With further biasing optimization, we reduce the resistance to 9.3 ± 3.7 Ω over more than 475 cycles, and achieve an insertion loss of 0.9 dB at 120 GHz. We also build a series–shunt device configuration with an isolation of 35 dB at 120 GHz. An optimized pulsed voltage write–verify switching approach can be used to improve the switching performance of memristors based on hexagonal boron nitride for radiofrequency circuit applications.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 7","pages":"557-566"},"PeriodicalIF":33.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01192-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Radiofrequency switches that drive or block high-frequency electromagnetic signals—typically, a few to tens of gigahertz—are essential components in modern communication devices. However, demand for higher data transmission rates requires radiofrequency switches capable of operating at frequencies beyond 100 GHz, which is challenging for current technologies. Here we report ambipolar memristive radiofrequency switches that are based on multilayer hexagonal boron nitride and can operate at frequencies up to 260 GHz. The ambipolar behaviour, which could help reduce peripheral hardware requirements, is due to a Joule-effect-assisted reset. We show switching in 21 devices with low-resistance states averaging 294 Ω and endurances of 2,000 cycles. With further biasing optimization, we reduce the resistance to 9.3 ± 3.7 Ω over more than 475 cycles, and achieve an insertion loss of 0.9 dB at 120 GHz. We also build a series–shunt device configuration with an isolation of 35 dB at 120 GHz. An optimized pulsed voltage write–verify switching approach can be used to improve the switching performance of memristors based on hexagonal boron nitride for radiofrequency circuit applications.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于毫米波射频应用的基于多层六方氮化硼的薄膜电路
驱动或阻断高频电磁信号(通常为几千兆赫到几十千兆赫)的射频开关是现代通信设备的重要组件。然而,对更高数据传输速率的需求要求射频开关能够在 100 千兆赫以上的频率下工作,这对现有技术来说具有挑战性。在此,我们报告了基于多层六方氮化硼的伏极性忆阻式射频开关,其工作频率可达 260 GHz。由于焦耳效应辅助复位,这种伏极行为有助于降低外围硬件要求。我们在 21 个器件中展示了开关,其低电阻状态平均为 294 Ω,持续时间为 2,000 个周期。通过进一步偏置优化,我们在超过 475 个周期内将电阻降至 9.3 ± 3.7 Ω,并在 120 GHz 时实现了 0.9 dB 的插入损耗。我们还构建了一种串联-并联器件配置,在 120 GHz 时的隔离度为 35 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Electronics
Nature Electronics Engineering-Electrical and Electronic Engineering
CiteScore
47.50
自引率
2.30%
发文量
159
期刊介绍: Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research. The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society. Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting. In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.
期刊最新文献
Build it up again Wood-based electronics that fold Integration of high-κ native oxides of gallium for two-dimensional transistors Hearable devices with sound bubbles Piezoelectric biomaterials printed on the fly
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1