{"title":"Automated signal-based evaluation of dynamic cone resistance via machine learning for subsurface characterization","authors":"Samuel Olamide Aregbesola, Yong-Hoon Byun","doi":"10.1111/mice.13294","DOIUrl":null,"url":null,"abstract":"<p>Dynamic cone resistance (DCR) is a recently introduced soil resistance index that has the unit of stress. It is determined from the dynamic response at the tip of an instrumented dynamic cone penetrometer. However, DCR evaluation is generally a manual, time-consuming, and error-prone process. Thus, this study investigates the feasibility of determining DCR using a stacked ensemble (SE) machine learning (ML) model that utilizes signals obtained from dynamic cone penetration testing. Two ML experiments revealed that using only force signals provides more accurate predictions of DCR. In addition, the SE technique outperformed the base learning algorithms in both cases. Overall, the findings suggest that ML techniques can be used to automate the analysis of DCR with force and acceleration signals.</p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"39 16","pages":"2541-2552"},"PeriodicalIF":8.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.13294","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mice.13294","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic cone resistance (DCR) is a recently introduced soil resistance index that has the unit of stress. It is determined from the dynamic response at the tip of an instrumented dynamic cone penetrometer. However, DCR evaluation is generally a manual, time-consuming, and error-prone process. Thus, this study investigates the feasibility of determining DCR using a stacked ensemble (SE) machine learning (ML) model that utilizes signals obtained from dynamic cone penetration testing. Two ML experiments revealed that using only force signals provides more accurate predictions of DCR. In addition, the SE technique outperformed the base learning algorithms in both cases. Overall, the findings suggest that ML techniques can be used to automate the analysis of DCR with force and acceleration signals.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.