Energy Transfer-Assisted Color Conversion of Persistent Mechanoluminescence in RhB@SiO2/SrAl2O4:Eu,Dy System for Multilevel Information Encryption

IF 9.8 1区 物理与天体物理 Q1 OPTICS Laser & Photonics Reviews Pub Date : 2024-07-02 DOI:10.1002/lpor.202400251
Yuan Deng, Danni Peng, Cheng-Long Shen, Junlu Sun, Guangsong Zheng, Shulong Chang, Yachuan Liang, Jun He, Chong-Xin Shan, Lin Dong
{"title":"Energy Transfer-Assisted Color Conversion of Persistent Mechanoluminescence in RhB@SiO2/SrAl2O4:Eu,Dy System for Multilevel Information Encryption","authors":"Yuan Deng,&nbsp;Danni Peng,&nbsp;Cheng-Long Shen,&nbsp;Junlu Sun,&nbsp;Guangsong Zheng,&nbsp;Shulong Chang,&nbsp;Yachuan Liang,&nbsp;Jun He,&nbsp;Chong-Xin Shan,&nbsp;Lin Dong","doi":"10.1002/lpor.202400251","DOIUrl":null,"url":null,"abstract":"<p>Persistent mechanoluminescence (PML) is highly desirable for its ability to overcome transient-emitting behavior, but its applications are hindered by the limited emission wavelengths. Herein, a universal chemical interlinkage-assisted efficient energy transfer (ET) strategy is introduced to achieve color conversion from green to red in traditional PML materials. A straightforward chemical route to create the RhB@SiO<sub>2</sub>/SAOED system is established via covalent chemical interlinkage by depositing mesoporous silica-encapsulated Rhodamine B (RhB) nanoparticles (RhB@SiO<sub>2</sub>) onto SrAl<sub>2</sub>O<sub>4</sub>:Eu, Dy (SAOED) particles. The resulting system exhibits a high ET efficiency of 53.5%. The multicolor PML of the RhB@SiO<sub>2</sub>/SAOED system remains visible to the naked eye for exceeding 28 s after mechanical stimulation. With this unique PML behavior, the RhB@SiO<sub>2</sub>/SAOED system demonstrates the potential applications ranging from visualized reading activities to multi-mode anticounterfeiting. This universal PML color-conversion strategy provides a new approach to high-performance mechanical light energy-conversion systems and may further inspire more diverse functional applications of classical PML materials.</p>","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202400251","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Persistent mechanoluminescence (PML) is highly desirable for its ability to overcome transient-emitting behavior, but its applications are hindered by the limited emission wavelengths. Herein, a universal chemical interlinkage-assisted efficient energy transfer (ET) strategy is introduced to achieve color conversion from green to red in traditional PML materials. A straightforward chemical route to create the RhB@SiO2/SAOED system is established via covalent chemical interlinkage by depositing mesoporous silica-encapsulated Rhodamine B (RhB) nanoparticles (RhB@SiO2) onto SrAl2O4:Eu, Dy (SAOED) particles. The resulting system exhibits a high ET efficiency of 53.5%. The multicolor PML of the RhB@SiO2/SAOED system remains visible to the naked eye for exceeding 28 s after mechanical stimulation. With this unique PML behavior, the RhB@SiO2/SAOED system demonstrates the potential applications ranging from visualized reading activities to multi-mode anticounterfeiting. This universal PML color-conversion strategy provides a new approach to high-performance mechanical light energy-conversion systems and may further inspire more diverse functional applications of classical PML materials.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于多级信息加密的 RhB@SiO2/SrAl2O4:Eu,Dy 系统中持久机械发光的能量转移辅助色彩转换
持久机械发光(PML)因其克服瞬态发光行为的能力而备受青睐,但其应用却因发射波长有限而受阻。本文介绍了一种通用的化学互联辅助高效能量转移(ET)策略,以实现传统 PML 材料从绿色到红色的颜色转换。将介孔二氧化硅封装的罗丹明 B(RhB)纳米颗粒(RhB@SiO2)沉积到 SrAl2O4:Eu、Dy(SAOED)颗粒上,通过共价化学互联建立了创建 RhB@SiO2/SAOED 系统的直接化学途径。该系统的 ET 效率高达 53.5%。在机械刺激后,RhB@SiO2/SAOED 系统的多色 PML 可在超过 28 秒的时间内保持肉眼可见。凭借这种独特的 PML 行为,RhB@SiO2/SAOED 系统展示了从可视化阅读活动到多模式防伪的潜在应用。这种通用的 PML 颜色转换策略为高性能机械光能转换系统提供了一种新的方法,并可能进一步激发经典 PML 材料更多样化的功能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
期刊最新文献
Thermally‐Switchable Metalenses Based on Quasi‐Bound States in the Continuum Wavelength‐switchable synchronously pumped Raman fiber laser near 1.7 µm for multispectral photoacoustic microscopy Abnormal Lattice Shrinkage, Site Occupation, and Luminescent Properties of Cr3+-Activated β-Al2O3 Structure Phosphors Resource-Saving and High-Robustness Image Sensing Based on Binary Optical Computing 2D Black Phosphorus Infrared Photodetectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1