Unraveling Polymorphic Crystal Structures of Li4SiS4 for All-Solid-State Batteries: Enhanced Ionic Conductivity via Aliovalent Sb Substitution

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Chemistry of Materials Pub Date : 2024-06-30 DOI:10.1021/acs.chemmater.4c01089
Jihun Roh, Hyojin Kim, Hyungjin Lee, Hyeri Bu, Alicia Manjón-Sanz, Hyungsub Kim, Seung-Tae Hong
{"title":"Unraveling Polymorphic Crystal Structures of Li4SiS4 for All-Solid-State Batteries: Enhanced Ionic Conductivity via Aliovalent Sb Substitution","authors":"Jihun Roh, Hyojin Kim, Hyungjin Lee, Hyeri Bu, Alicia Manjón-Sanz, Hyungsub Kim, Seung-Tae Hong","doi":"10.1021/acs.chemmater.4c01089","DOIUrl":null,"url":null,"abstract":"Safety concerns regarding organic-based liquid electrolytes in Li-ion batteries have led to extensive research on lithium-ion conductors. Despite cost-effectiveness, thio-silicate Li<sub>4</sub>SiS<sub>4</sub> has been overlooked owing to unclear crystallographic information. This study clarifies the crystal structures and electrochemical properties of two Li<sub>4</sub>SiS<sub>4</sub> polymorphs and their aliovalent substitution series, i.e., Li<sub>4–<i>x</i></sub>Si<sub>1–<i>x</i></sub>Sb<sub><i>x</i></sub>S<sub>4</sub>. Our findings indicate that the polymorphs differ primarily in their SiS<sub>4</sub> tetrahedra stacking configurations, with the high-temperature phase being more orderly than the low-temperature phase. However, they exhibit similar ionic-transport properties, indicating that the tetrahedra stacking minimally affects Li-ion mobility. We found that the dense packing of Li in these structures restricts ion movement, necessitating the creation of Li vacancies through the aliovalent substitution of Sb<sup>5+</sup> for Si<sup>4+</sup> to enhance Li mobility. The substitution series Li<sub>4–<i>x</i></sub>Si<sub>1–<i>x</i></sub>Sb<sub><i>x</i></sub>S<sub>4</sub> with <i>x</i> = 0.15 exhibited a 10-fold conductivity increase, signifying the influence of Li vacancies on ionic transport. Cyclic voltammetry confirmed the suitability of Li<sub>3.85</sub>Si<sub>0.85</sub>Sb<sub>0.15</sub>S<sub>4</sub> as a solid electrolyte for all-solid-state batteries. This study suggests that the ionic conductivity in Li<sub>4</sub>SiS<sub>4</sub> depends more on Li-ion concentration than on SiS<sub>4</sub> tetrahedra stacking, providing strategic insights for developing more efficient solid-state battery materials.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c01089","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Safety concerns regarding organic-based liquid electrolytes in Li-ion batteries have led to extensive research on lithium-ion conductors. Despite cost-effectiveness, thio-silicate Li4SiS4 has been overlooked owing to unclear crystallographic information. This study clarifies the crystal structures and electrochemical properties of two Li4SiS4 polymorphs and their aliovalent substitution series, i.e., Li4–xSi1–xSbxS4. Our findings indicate that the polymorphs differ primarily in their SiS4 tetrahedra stacking configurations, with the high-temperature phase being more orderly than the low-temperature phase. However, they exhibit similar ionic-transport properties, indicating that the tetrahedra stacking minimally affects Li-ion mobility. We found that the dense packing of Li in these structures restricts ion movement, necessitating the creation of Li vacancies through the aliovalent substitution of Sb5+ for Si4+ to enhance Li mobility. The substitution series Li4–xSi1–xSbxS4 with x = 0.15 exhibited a 10-fold conductivity increase, signifying the influence of Li vacancies on ionic transport. Cyclic voltammetry confirmed the suitability of Li3.85Si0.85Sb0.15S4 as a solid electrolyte for all-solid-state batteries. This study suggests that the ionic conductivity in Li4SiS4 depends more on Li-ion concentration than on SiS4 tetrahedra stacking, providing strategic insights for developing more efficient solid-state battery materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示用于全固态电池的 Li4SiS4 的多晶体结构:通过无价锑取代增强离子电导率
对锂离子电池中有机基液态电解质安全性的担忧促使人们对锂离子导体进行了广泛的研究。尽管硫硅酸盐 Li4SiS4 具有成本效益,但由于晶体学信息不明确而被忽视。本研究阐明了两种 Li4SiS4 多晶体及其异价取代系列(即 Li4-xSi1-xSbxS4)的晶体结构和电化学特性。我们的研究结果表明,这两种多晶体主要在 SiS4 四面体堆叠构型上存在差异,高温相比低温相更有序。然而,它们表现出相似的离子传输特性,表明四面体堆叠对锂离子迁移率的影响微乎其微。我们发现,锂在这些结构中的密集堆积限制了离子的移动,因此有必要通过用 Sb5+ 对 Si4+ 的异价取代来产生锂空位,从而提高锂的移动性。x = 0.15 的置换系列 Li4-xSi1-xSbxS4 的电导率提高了 10 倍,这表明锂空位对离子传输产生了影响。循环伏安法证实,Li3.85Si0.85Sb0.15S4 适合用作全固态电池的固态电解质。这项研究表明,Li4SiS4 中的离子传导性更多地取决于锂离子浓度,而不是 SiS4 四面体堆叠,这为开发更高效的固态电池材料提供了战略性启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
期刊最新文献
Interpretable Machine Learning Model on Thermal Conductivity Using Publicly Available Datasets and Our Internal Lab Dataset A Cobalt–Platinum–Ruthenium System for Acidic Methanol Oxidation Thermodynamics of Sodium–Lead Alloys for Negative Electrodes from First-Principles Modeling Analysis of Ball-Milling Process for Battery-Electrode Synthesis Role of Incommensurate Modulation in Ba4(Sm1–xLax)2Ti4Nb6O30 Tetragonal Tungsten Bronzes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1