Tailoring Phonon Dispersion of a Genetically Designed Nanophononic Metasurface.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-07-03 DOI:10.1021/acsnano.4c01954
Michele Diego, Matteo Pirro, Byunggi Kim, Roman Anufriev, Masahiro Nomura
{"title":"Tailoring Phonon Dispersion of a Genetically Designed Nanophononic Metasurface.","authors":"Michele Diego, Matteo Pirro, Byunggi Kim, Roman Anufriev, Masahiro Nomura","doi":"10.1021/acsnano.4c01954","DOIUrl":null,"url":null,"abstract":"<p><p>Phonon engineering at the nanoscale holds immense promise for a myriad of applications. However, the design of phononic devices continues to rely on regular shapes chosen according to long-established simple rules. Here, we demonstrate an inverse design approach to create a two-dimensional phononic metasurface exhibiting a highly anisotropic phonon dispersion along the main axes of the Brillouin zone. A partial hypersonic bandgap of approximately 3.5 GHz is present along one axis, with gap closure along the orthogonal axis. Such a level of control is achieved through genetically optimized unit cells, with shapes exceeding conventional intuition. We experimentally validated our theoretical predictions using Brillouin light scattering, confirming the effectiveness of the inverse design method. Our approach unlocks the potential for automated engineering of phononic metasurfaces with on-demand functionalities, thus leading toward innovative phononic devices beyond the limitations of traditional design paradigms.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c01954","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Phonon engineering at the nanoscale holds immense promise for a myriad of applications. However, the design of phononic devices continues to rely on regular shapes chosen according to long-established simple rules. Here, we demonstrate an inverse design approach to create a two-dimensional phononic metasurface exhibiting a highly anisotropic phonon dispersion along the main axes of the Brillouin zone. A partial hypersonic bandgap of approximately 3.5 GHz is present along one axis, with gap closure along the orthogonal axis. Such a level of control is achieved through genetically optimized unit cells, with shapes exceeding conventional intuition. We experimentally validated our theoretical predictions using Brillouin light scattering, confirming the effectiveness of the inverse design method. Our approach unlocks the potential for automated engineering of phononic metasurfaces with on-demand functionalities, thus leading toward innovative phononic devices beyond the limitations of traditional design paradigms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定制基因设计的纳米声波元表面的声波散布。
纳米级声子工程为无数应用带来了巨大前景。然而,声子器件的设计仍然依赖于根据长期以来形成的简单规则选择的规则形状。在这里,我们展示了一种反向设计方法,以创建一个二维声子元表面,沿布里渊区主轴展示高度各向异性的声子色散。沿一条轴线出现了约 3.5 GHz 的部分高超声带隙,沿正交轴线出现了间隙闭合。这种控制水平是通过基因优化的单元单元实现的,其形状超越了传统的直觉。我们利用布里渊光散射对理论预测进行了实验验证,证实了逆向设计方法的有效性。我们的方法释放了按需功能声波元表面自动化工程的潜力,从而超越传统设计范式的限制,开发出创新的声波设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Flotation Coefficient Distributions of Lipid Nanoparticles by Sedimentation Velocity Analytical Ultracentrifugation. Thermal Activation of Anti-Stokes Photoluminescence in CsPbBr3 Perovskite Nanocrystals: The Role of Surface Polaron States. Magnesium Nanoparticles for Surface-Enhanced Raman Scattering and Plasmon-Driven Catalysis. Wearable, Biocompatible, and Dual-Emission Ocular Multisensor Patch for Continuous Profiling of Fluoroquinolone Antibiotics in Tears. Overcoming Kinetic Limitations of Polyanionic Cathode toward High-Performance Na-Ion Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1