Kinetics of Squalene Quenching Singlet Oxygen and the Thermal Degradation Products Identification.

IF 5.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Journal of Agricultural and Food Chemistry Pub Date : 2024-07-02 DOI:10.1021/acs.jafc.4c03329
Yunping Yao, Yue Zheng, Haiting Dai, Yuanyuan Jia, Changmo Li
{"title":"Kinetics of Squalene Quenching Singlet Oxygen and the Thermal Degradation Products Identification.","authors":"Yunping Yao, Yue Zheng, Haiting Dai, Yuanyuan Jia, Changmo Li","doi":"10.1021/acs.jafc.4c03329","DOIUrl":null,"url":null,"abstract":"<p><p>Squalene has been proven to possess various bioactive functions that are widely present in vegetable oils. A more comprehensive understanding of the reaction behavior of squalene under oxidative conditions was achieved by studying its antioxidant capacity and thermal degradation products. The total singlet oxygen quenching rate constant (<i>k</i><sub>r</sub> <i>+ k</i><sub>q</sub>) of squalene was 3.8 × 10<sup>7</sup> M<sup>-1</sup> s<sup>-1</sup>, and both physical and chemical quenching mechanisms equally contribute to the overall singlet oxygen quenching. Fourteen degradation products of squalene were identified at 180 °C by using gas chromatography-mass spectrometry (GC-MS). Combining with DFT calculations, the thermal degradation pathway of squalene was proposed: the aldehydes, ketones, and alcohols, and epoxy compounds were formed by the homolytic cleavage of squalene hydroperoxides to form alkoxy radicals, followed by β-scission of the alkoxyl radicals at adjacent C-C bonds or intramolecular cyclization.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c03329","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Squalene has been proven to possess various bioactive functions that are widely present in vegetable oils. A more comprehensive understanding of the reaction behavior of squalene under oxidative conditions was achieved by studying its antioxidant capacity and thermal degradation products. The total singlet oxygen quenching rate constant (kr + kq) of squalene was 3.8 × 107 M-1 s-1, and both physical and chemical quenching mechanisms equally contribute to the overall singlet oxygen quenching. Fourteen degradation products of squalene were identified at 180 °C by using gas chromatography-mass spectrometry (GC-MS). Combining with DFT calculations, the thermal degradation pathway of squalene was proposed: the aldehydes, ketones, and alcohols, and epoxy compounds were formed by the homolytic cleavage of squalene hydroperoxides to form alkoxy radicals, followed by β-scission of the alkoxyl radicals at adjacent C-C bonds or intramolecular cyclization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
角鲨烯淬灭单线态氧的动力学及热降解产物鉴定。
角鲨烯已被证实具有多种生物活性功能,广泛存在于植物油中。通过研究角鲨烯的抗氧化能力和热降解产物,可以更全面地了解角鲨烯在氧化条件下的反应行为。角鲨烯的总单线态氧淬灭速率常数(kr + kq)为 3.8 × 107 M-1 s-1,物理和化学淬灭机制对总单线态氧淬灭的贡献相同。利用气相色谱-质谱法(GC-MS)鉴定了 14 种角鲨烯在 180 °C 下的降解产物。结合 DFT 计算,提出了角鲨烯的热降解途径:角鲨烯氢过氧化物通过均解裂解形成烷氧基自由基,然后烷氧基自由基在相邻的 C-C 键上发生 β 裂解或分子内环化,形成醛、酮、醇和环氧化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
期刊最新文献
Multianalytical Approach to Understand Polyphenol-Mal d 1 Interactions to Predict Their Impact on the Allergenic Potential of Apples. The Flavonoid Glycoside from Abrus cantoniensis Hance Alleviates Alcoholic Liver Injury by Inhibiting Ferroptosis in an AMPK-Dependent Manner. Issue Editorial Masthead Issue Publication Information Combined UPLC-QqQ-MS/MS and AP-MALDI Mass Spectrometry Imaging Method for Phospholipidomics in Obese Mouse Kidneys: Alleviation by Feeding Sea Cucumber Phospholipids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1