Pub Date : 2024-11-19DOI: 10.1021/acs.jafc.4c07735
Kwanghyun Park, Gyeongmin Kim, Seungwoo Cha, Yangsub Ham, Ji-Sook Hahn
Phytoene, a colorless carotenoid with unique ultraviolet (UV)-B absorption properties, offers potential for applications in functional food, cosmetics, and therapeutics. However, their low natural yield poses a challenge for large-scale production. This study aims to enhance phytoene production in the oleaginous yeast Yarrowia lipolytica by introducing a heterologous phytoene synthase gene combined with metabolic engineering approaches. We enhanced phytoene synthesis by overexpressing key genes in the mevalonate pathway and compartmentalizing the biosynthetic pathway within peroxisomes. Moreover, we inhibited the glyoxylate cycle to increase the accumulation of peroxisomal acetyl-CoA available for phytoene production. Our engineered strains demonstrated a significant increase in phytoene production, reaching up to 1.34 g/L titer and 58.74 mg/gDCW yield in the flask-scale fed-batch culture, which are the highest levels reported to date. These results underscore the potential of Y. lipolytica as a robust platform for producing phytoenes and other terpenoids on an industrial scale, offering valuable insights for future efforts in metabolic engineering.
{"title":"Efficient Production of the Colorless Carotenoid Phytoene in <i>Yarrowia lipolytica</i> through Metabolic Engineering.","authors":"Kwanghyun Park, Gyeongmin Kim, Seungwoo Cha, Yangsub Ham, Ji-Sook Hahn","doi":"10.1021/acs.jafc.4c07735","DOIUrl":"https://doi.org/10.1021/acs.jafc.4c07735","url":null,"abstract":"<p><p>Phytoene, a colorless carotenoid with unique ultraviolet (UV)-B absorption properties, offers potential for applications in functional food, cosmetics, and therapeutics. However, their low natural yield poses a challenge for large-scale production. This study aims to enhance phytoene production in the oleaginous yeast <i>Yarrowia lipolytica</i> by introducing a heterologous phytoene synthase gene combined with metabolic engineering approaches. We enhanced phytoene synthesis by overexpressing key genes in the mevalonate pathway and compartmentalizing the biosynthetic pathway within peroxisomes. Moreover, we inhibited the glyoxylate cycle to increase the accumulation of peroxisomal acetyl-CoA available for phytoene production. Our engineered strains demonstrated a significant increase in phytoene production, reaching up to 1.34 g/L titer and 58.74 mg/gDCW yield in the flask-scale fed-batch culture, which are the highest levels reported to date. These results underscore the potential of <i>Y. lipolytica</i> as a robust platform for producing phytoenes and other terpenoids on an industrial scale, offering valuable insights for future efforts in metabolic engineering.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1021/acs.jafc.4c06972
Yanhong Li, Liangliang Zhou, Wenjie Wei, Hagar M S Salman, Yingying Wu, Minghua Wang
In this study, the nuarimol enantiomers were successfully baseline separated with Rs 1.70 by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The absolute configurations of the nuarimol enantiomers were confirmed as R-(+)-nuarimol and S-(-)-nuarimol. The enantioselective bioactivity assay indicated that R-(+)-nuarimol exhibited greater potency against seven phytopathogenic fungi, with values approximately 1.4-3.5 and 4.5-51.4 times higher than those of rac-nuarimol and S-(-)-nuarimol. The active contribution value of R-enantiomer was 82-98%, showing that R-(+)-nuarimol played a crucial role in bioactivity. Meanwhile, R-(+)-nuarimol exhibited stronger effects in increasing the cell membrane permeability, compromising the cell membrane integrity, and inhibiting ergosterol biosynthesis. Molecular docking analysis showed that R-(+)-nuarimol possessed a stronger binding affinity to sterol 14-α demethylase (CYP51) than S-(-)-nuarimol, with docking energies of -7.42 and -7.36 kcal/mol. This study contributes essential data for screening a high-activity enantiomer of nuarimol and provide guidance for reducing used dosage and increasing the efficiency of nuarimolAQ.
{"title":"Enantioseparation, Absolute Configuration, and Enantioselective Bioactivity Mechanism of the Chiral Fungicide Nuarimol.","authors":"Yanhong Li, Liangliang Zhou, Wenjie Wei, Hagar M S Salman, Yingying Wu, Minghua Wang","doi":"10.1021/acs.jafc.4c06972","DOIUrl":"https://doi.org/10.1021/acs.jafc.4c06972","url":null,"abstract":"<p><p>In this study, the nuarimol enantiomers were successfully baseline separated with Rs 1.70 by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The absolute configurations of the nuarimol enantiomers were confirmed as <i>R</i>-(+)-nuarimol and <i>S</i>-(-)-nuarimol. The enantioselective bioactivity assay indicated that <i>R</i>-(+)-nuarimol exhibited greater potency against seven phytopathogenic fungi, with values approximately 1.4-3.5 and 4.5-51.4 times higher than those of rac-nuarimol and <i>S</i>-(-)-nuarimol. The active contribution value of <i>R</i>-enantiomer was 82-98%, showing that <i>R</i>-(+)-nuarimol played a crucial role in bioactivity. Meanwhile, <i>R</i>-(+)-nuarimol exhibited stronger effects in increasing the cell membrane permeability, compromising the cell membrane integrity, and inhibiting ergosterol biosynthesis. Molecular docking analysis showed that <i>R</i>-(+)-nuarimol possessed a stronger binding affinity to sterol 14-α demethylase (CYP51) than <i>S</i>-(-)-nuarimol, with docking energies of -7.42 and -7.36 kcal/mol. This study contributes essential data for screening a high-activity enantiomer of nuarimol and provide guidance for reducing used dosage and increasing the efficiency of nuarimolAQ.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1021/acs.jafc.4c08121
Yang Li, Haocun Kong, Caiming Li, Xiaofeng Ban, Zhengbiao Gu, Yujie Lu, Zhaofeng Li
Mitigating the cold denaturation of gluten protein during frozen storage is crucial for the quality improvement of frozen cereal products. Our previous study observed that starch derivatives, especially short-clustered maltodextrin (SCMD), could significantly improve frozen dough quality, alleviating the deterioration of gluten-network structure. To further reveal the cryoprotection mechanism of SCMD on gluten protein during frozen storage, the modulatory roles of SCMD in the hydration capacity and conformation behavior of gluten protein were explored, in comparison with DE2 maltodextrin (MD) and pregelatinized starch (PGS). Results demonstrated that SCMD significantly facilitated the reservation of bound water and decreased the surface hydrophobicity of gluten protein after 8 weeks of frozen storage. Remarkable effects of SCMD on stabilizing the secondary structure and microenvironment of aromatic amino acids of gluten protein were observed. Further mechanistic investigation showed that when the temperature dropped from 300 to 250 K, the short-clustered structure could stabilize the α-helixes more evidently than linear structures through hydrogen bonds with water and steric hindrance effect, rather than directly with protein. Our findings will provide novel insights into the cold denaturation of gluten protein and useful guidance in selecting the optimum structure to suppress this denaturation, improving the quality of frozen cereal products.
减轻面筋蛋白在冷冻储存过程中的冷变性对提高冷冻谷物产品的质量至关重要。我们之前的研究发现,淀粉衍生物,尤其是短簇麦芽糊精(SCMD),可以显著改善冷冻面团的质量,缓解面筋网络结构的恶化。为了进一步揭示短簇麦芽糊精在冷冻贮藏期间对面筋蛋白的低温保护机制,研究人员将短簇麦芽糊精与 DE2 麦芽糊精(MD)和预糊化淀粉(PGS)进行了比较,探讨了短簇麦芽糊精对面筋蛋白水合能力和构象行为的调节作用。结果表明,经过 8 周的冷冻储存后,SCMD 显著促进了结合水的保留,并降低了面筋蛋白的表面疏水性。观察发现,SCMD 对稳定面筋蛋白的二级结构和芳香族氨基酸的微环境有明显作用。进一步的机理研究表明,当温度从 300 K 降到 250 K 时,短簇结构通过与水的氢键和立体阻碍效应,而不是直接与蛋白质结合,比线性结构更明显地稳定了 α-螺旋。我们的发现将为谷蛋白的低温变性提供新的见解,并为选择最佳结构来抑制这种变性提供有用的指导,从而提高冷冻谷物产品的质量。
{"title":"Mitigating the Effects of Starch Derivatives on Cold Denaturation of Gluten Protein: Insights from Hydration Capacity and Conformation Behavior.","authors":"Yang Li, Haocun Kong, Caiming Li, Xiaofeng Ban, Zhengbiao Gu, Yujie Lu, Zhaofeng Li","doi":"10.1021/acs.jafc.4c08121","DOIUrl":"https://doi.org/10.1021/acs.jafc.4c08121","url":null,"abstract":"<p><p>Mitigating the cold denaturation of gluten protein during frozen storage is crucial for the quality improvement of frozen cereal products. Our previous study observed that starch derivatives, especially short-clustered maltodextrin (SCMD), could significantly improve frozen dough quality, alleviating the deterioration of gluten-network structure. To further reveal the cryoprotection mechanism of SCMD on gluten protein during frozen storage, the modulatory roles of SCMD in the hydration capacity and conformation behavior of gluten protein were explored, in comparison with DE2 maltodextrin (MD) and pregelatinized starch (PGS). Results demonstrated that SCMD significantly facilitated the reservation of bound water and decreased the surface hydrophobicity of gluten protein after 8 weeks of frozen storage. Remarkable effects of SCMD on stabilizing the secondary structure and microenvironment of aromatic amino acids of gluten protein were observed. Further mechanistic investigation showed that when the temperature dropped from 300 to 250 K, the short-clustered structure could stabilize the α-helixes more evidently than linear structures through hydrogen bonds with water and steric hindrance effect, rather than directly with protein. Our findings will provide novel insights into the cold denaturation of gluten protein and useful guidance in selecting the optimum structure to suppress this denaturation, improving the quality of frozen cereal products.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Building upon previous structure-activity relationships about the fungicidal amide and hydrazide lead structures, 24 novel amide-hydrazide compounds were designed and synthesized with L-isoleucine as the initial skeleton to explore the impact of substituents in the hydrazide bridge on the fungicidal activity. Among these compounds, A5 exhibited excellent and broad spectrum inhibitory activity, along with satisfactory in vivo protective efficiency against R. solani at concentrations of 200 and 50 μg·mL-1. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations revealed that compound A5 induced significant morphological changes in the R. solani mycelium coupled with vacuole rupture and cytoplasmic inhomogeneity in cellular structures. Transcriptomic and metabolomic analyses indicated that, following A5 treatment, the differentially expressed genes and metabolites were significantly enriched in carbohydrate metabolism-related pathways as well as in lipid metabolism-associated pathways, including glycerophospholipid metabolism, steroid biosynthesis, arachidonic acid metabolism, and sphingolipid metabolism. Additionally, compound A5 demonstrated low toxicity to zebrafish, with survival rates of 100% and 60% at concentrations of 1 and 10 μg·mL-1, respectively, over a period of 7 days. The above results provide theoretical guidance for the development of novel green hydrazide fungicidal candidates.
{"title":"l-Isoleucine-Derived Amide-hydrazide Compounds Evaluated as a Novel Potential Agricultural Fungicide.","authors":"Jing Chang, Yufei Gong, Wenfei Zhang, Tiancheng Zhang, Jiacheng Liu, Lingzhi Meng, Qingping Ma, Yu-Cheng Gu, Xue-Wen Hua","doi":"10.1021/acs.jafc.4c06630","DOIUrl":"https://doi.org/10.1021/acs.jafc.4c06630","url":null,"abstract":"<p><p>Building upon previous structure-activity relationships about the fungicidal amide and hydrazide lead structures, 24 novel amide-hydrazide compounds were designed and synthesized with <i>L</i>-isoleucine as the initial skeleton to explore the impact of substituents in the hydrazide bridge on the fungicidal activity. Among these compounds, <b>A5</b> exhibited excellent and broad spectrum inhibitory activity, along with satisfactory <i>in vivo</i> protective efficiency against <i>R. solani</i> at concentrations of 200 and 50 μg·mL<sup>-1</sup>. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations revealed that compound <b>A5</b> induced significant morphological changes in the <i>R. solani</i> mycelium coupled with vacuole rupture and cytoplasmic inhomogeneity in cellular structures. Transcriptomic and metabolomic analyses indicated that, following <b>A5</b> treatment, the differentially expressed genes and metabolites were significantly enriched in carbohydrate metabolism-related pathways as well as in lipid metabolism-associated pathways, including glycerophospholipid metabolism, steroid biosynthesis, arachidonic acid metabolism, and sphingolipid metabolism. Additionally, compound <b>A5</b> demonstrated low toxicity to zebrafish, with survival rates of 100% and 60% at concentrations of 1 and 10 μg·mL<sup>-1</sup>, respectively, over a period of 7 days. The above results provide theoretical guidance for the development of novel green hydrazide fungicidal candidates.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1021/acs.jafc.4c08059
Michael Hellwig
Sucralose is an artificial sweetener whose stability during the thermal treatment of food is controversially discussed. In the present work, sucralose was subjected to different kinds of heat treatment either as such, in the presence of protein, or as an ingredient of food. Compared with sucrose, sucralose showed remarkable instability and discoloration after heating at 85-90 °C for 1 h. A chlorinated furan-3-one and different chlorinated dicarbonyl compounds were identified by High-performance liquid chromatography-time-of-flight mass spectrometry (HPLC-TOF-MS) for the first time, indicating that both the 4-chlorogalactosyl residue and the 1,6-dichlorofructosyl residue give rise to novel chlorinated sugar degradation products. When sucralose was heated in the presence of protein, the formation of 3-chlorotyrosine was detected, indicating that sucralose can invoke chlorination of other biomolecules. The influence of the addition of sucralose (0.03-0.1%) to dough on pH value, color development, and HMF formation was tested in baking experiments (muffins, coconut macaroons, cookies). A significantly higher HMF concentration was observed in bakery products, including sucralose, and a chlorinated 1,2-dicarbonyl compound was detected qualitatively in baked cookies. This work shows that sucralose is not stable during baking processes at high temperatures and low moisture contents, thereby confirming recommendations from the German Institute of Risk Assessment not to use sucralose for baking.
{"title":"Formation of Chlorinated Carbohydrate Degradation Products and Amino Acids during Heating of Sucralose in Model Systems and Food.","authors":"Michael Hellwig","doi":"10.1021/acs.jafc.4c08059","DOIUrl":"https://doi.org/10.1021/acs.jafc.4c08059","url":null,"abstract":"<p><p>Sucralose is an artificial sweetener whose stability during the thermal treatment of food is controversially discussed. In the present work, sucralose was subjected to different kinds of heat treatment either as such, in the presence of protein, or as an ingredient of food. Compared with sucrose, sucralose showed remarkable instability and discoloration after heating at 85-90 °C for 1 h. A chlorinated furan-3-one and different chlorinated dicarbonyl compounds were identified by High-performance liquid chromatography-time-of-flight mass spectrometry (HPLC-TOF-MS) for the first time, indicating that both the 4-chlorogalactosyl residue and the 1,6-dichlorofructosyl residue give rise to novel chlorinated sugar degradation products. When sucralose was heated in the presence of protein, the formation of 3-chlorotyrosine was detected, indicating that sucralose can invoke chlorination of other biomolecules. The influence of the addition of sucralose (0.03-0.1%) to dough on pH value, color development, and HMF formation was tested in baking experiments (muffins, coconut macaroons, cookies). A significantly higher HMF concentration was observed in bakery products, including sucralose, and a chlorinated 1,2-dicarbonyl compound was detected qualitatively in baked cookies. This work shows that sucralose is not stable during baking processes at high temperatures and low moisture contents, thereby confirming recommendations from the German Institute of Risk Assessment not to use sucralose for baking.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1021/acs.jafc.4c07204
Zhaoqiong Liu, Min Chen, Shanshan Du, Rui Wang, Yibin Qiu, Sha Li, Hong Xu, Delei Xu
Cane molasses, a sugar-rich agro-industrial byproduct, was used to enhance the production of ε-poly-l-lysine (ε-PL) in Streptomyces albulus PD-1 as a cost-effective carbon source. The sucrose metabolism pathway was engineered by heterologously expressing sucrose-6-phosphate hydrolase from Escherichia coli W. The optimization of various promoters identified the SP44 promoter, increasing the total sugar utilization rate by 2.76-fold compared with the ermEp* promoter. Additionally, adaptive laboratory evolution improved the total sugar utilization rate. The evolved strain achieved an ε-PL titer of 2.65 ± 0.15 g/L in flask experiments, increasing the ε-PL titer by 7.16-fold compared with the unevolved strain. Comparative transcriptomic analyses revealed that the enhanced tolerance of the evolved strain to high concentrations of cane molasses was primarily due to modifications in the sucrose metabolism pathways, microbial metabolism in heavy metals and phenols, and the amino acids transport and metabolic pathways. These changes enabled more efficient ε-PL production. During fed-batch fermentation in a 5-L fermentor using a concentration of 50 g/L cane molasses, the ε-PL titer reached 36.88 ± 0.62 g/L, and dry cell weight was 41.1 ± 1.0 g/L. This study illustrates that cane molasses is an economical carbon source for producing ε-PL on an industrial scale.
{"title":"Enhancing the Production of ε-Poly-l-Lysine by Engineering the Sucrose Metabolism Pathway in <i>Streptomyces albulus</i> PD-1 Using Cane Molasses.","authors":"Zhaoqiong Liu, Min Chen, Shanshan Du, Rui Wang, Yibin Qiu, Sha Li, Hong Xu, Delei Xu","doi":"10.1021/acs.jafc.4c07204","DOIUrl":"10.1021/acs.jafc.4c07204","url":null,"abstract":"<p><p>Cane molasses, a sugar-rich agro-industrial byproduct, was used to enhance the production of ε-poly-l-lysine (ε-PL) in <i>Streptomyces albulus</i> PD-1 as a cost-effective carbon source. The sucrose metabolism pathway was engineered by heterologously expressing sucrose-6-phosphate hydrolase from <i>Escherichia coli</i> W. The optimization of various promoters identified the SP44 promoter, increasing the total sugar utilization rate by 2.76-fold compared with the <i>ermEp*</i> promoter. Additionally, adaptive laboratory evolution improved the total sugar utilization rate. The evolved strain achieved an ε-PL titer of 2.65 ± 0.15 g/L in flask experiments, increasing the ε-PL titer by 7.16-fold compared with the unevolved strain. Comparative transcriptomic analyses revealed that the enhanced tolerance of the evolved strain to high concentrations of cane molasses was primarily due to modifications in the sucrose metabolism pathways, microbial metabolism in heavy metals and phenols, and the amino acids transport and metabolic pathways. These changes enabled more efficient ε-PL production. During fed-batch fermentation in a 5-L fermentor using a concentration of 50 g/L cane molasses, the ε-PL titer reached 36.88 ± 0.62 g/L, and dry cell weight was 41.1 ± 1.0 g/L. This study illustrates that cane molasses is an economical carbon source for producing ε-PL on an industrial scale.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Donkey milk IgG was probed for the site-specific N-glycosylation pattern through RP-UHPLC-MS/MS. The affinity-purified milk IgG was subjected to SDS-PAGE and proteomic analysis, which revealed the presence of subtypes. Multiple N-glycopeptides arising from the predicted donkey IgG1, IgG2, IgG3, IgG5, IgG6, and IgG7 subtypes' heavy-chain constant region were shown to contain glycans at the highly conserved glycosylation site NST in the CH2 domain. Differences in the peptide backbone with the NST site among subtypes generated after trypsin digestion resulted in the evaluation of the subtype-specific glycan pattern. Glycan sequence analysis indicated predominantly biantennary complex types with core fucosylation at the site NST. Interestingly, an additional site NQT in the CH1 domain of the heavy-chain constant region of IgG5 was found to possess mainly sialylated biantennary complex glycans with NeuAc and NeuGc. Structural diversity of glycans was mainly observed in the predicted donkey IgG1, IgG5, and IgG7, whereas IgG2, IgG3, and IgG6 resulted in the glycopeptides that are of low abundance in the analyzed samples. These findings would pave the way for a better understanding of donkey milk functional properties.
{"title":"Site-Specific <i>N</i>-Glycoprofiling of Immunoglobulin G Subtypes from Donkey Milk.","authors":"Sudarshan Marihonnaiah, Gnanesh Kumar Belur Shivappa","doi":"10.1021/acs.jafc.4c07168","DOIUrl":"https://doi.org/10.1021/acs.jafc.4c07168","url":null,"abstract":"<p><p>Donkey milk IgG was probed for the site-specific <i>N</i>-glycosylation pattern through RP-UHPLC-MS/MS. The affinity-purified milk IgG was subjected to SDS-PAGE and proteomic analysis, which revealed the presence of subtypes. Multiple <i>N</i>-glycopeptides arising from the predicted donkey IgG1, IgG2, IgG3, IgG5, IgG6, and IgG7 subtypes' heavy-chain constant region were shown to contain glycans at the highly conserved glycosylation site <i>NST</i> in the CH2 domain. Differences in the peptide backbone with the <i>NST</i> site among subtypes generated after trypsin digestion resulted in the evaluation of the subtype-specific glycan pattern. Glycan sequence analysis indicated predominantly biantennary complex types with core fucosylation at the site <i>NST</i>. Interestingly, an additional site <i>NQT</i> in the CH1 domain of the heavy-chain constant region of IgG5 was found to possess mainly sialylated biantennary complex glycans with NeuAc and NeuGc. Structural diversity of glycans was mainly observed in the predicted donkey IgG1, IgG5, and IgG7, whereas IgG2, IgG3, and IgG6 resulted in the glycopeptides that are of low abundance in the analyzed samples. These findings would pave the way for a better understanding of donkey milk functional properties.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The emergence of insecticide resistance in the rice stem borer, Chilo suppressalis, is a growing threat to the sustainable control of this important insect crop pest. Thus, monitoring of C. suppressalis populations for insecticide resistance and characterization of the underlying genetic mechanisms is essential to inform rational control decisions and the development of resistance management strategies. Here, we monitored 126 C. suppressalis field populations from China for resistance evolution to four major insecticides: 53 for chlorantraniliprole, 50 for abamectin, 74 for triazophos, and 76 for spinetoram. Moderate to high levels of resistance were observed to all four insecticides. Investigation of the underlying resistance mechanisms revealed multiple mutations in the ryanodine receptor (RyR) and acetylcholinesterase 1 (AChE1), leading to target-site resistance to chlorantraniliprole and triazophos, respectively. In contrast, the absence of mutations in the glutamate-gated chloride channel (GluCl) and α6 nicotinic acetylcholine receptor (nAChR α6) subunit suggested that nontarget site mechanisms contribute to the multiple-insecticide resistance phenotypes observed in C. suppressalis. In this regard, we revealed overexpression of the uridine 5'-diphospho-glycosyltransferase UGT33AF1 and cytochrome P450 CYP6AB45 in C. suppressalis field populations. Functional characterization using transgenic Drosophila demonstrated that UGT33AF1 confers resistance against multiple insecticides in vivo, whereas CYP6AB45 does not appear to contribute to resistance. Collectively, our findings reveal the current status of resistance of C. suppressalis to insecticides in China and uncover a diverse profile of resistance mechanisms in this species. These findings provide a foundation for the development of sustainable strategies to effectively manage and control this pest.
{"title":"The Evolution and Mechanisms of Multiple-Insecticide Resistance in Rice Stem Borer, <i>Chilo suppressalis</i> Walker (Lepidoptera: Crambidae).","authors":"Shuai Wang, Chong Liu, Song-Tao Qiao, Fang-Rui Guo, Yuan Xie, Hao Sun, Yan Liu, Si-Qi Zhao, Li-Qi Zhou, Lin-Feng He, Feng-Xia Yang, Shun-Fan Wu, Chris Bass, Cong-Fen Gao","doi":"10.1021/acs.jafc.4c06839","DOIUrl":"https://doi.org/10.1021/acs.jafc.4c06839","url":null,"abstract":"<p><p>The emergence of insecticide resistance in the rice stem borer, <i>Chilo suppressalis</i>, is a growing threat to the sustainable control of this important insect crop pest. Thus, monitoring of <i>C. suppressalis</i> populations for insecticide resistance and characterization of the underlying genetic mechanisms is essential to inform rational control decisions and the development of resistance management strategies. Here, we monitored 126 <i>C. suppressalis</i> field populations from China for resistance evolution to four major insecticides: 53 for chlorantraniliprole, 50 for abamectin, 74 for triazophos, and 76 for spinetoram. Moderate to high levels of resistance were observed to all four insecticides. Investigation of the underlying resistance mechanisms revealed multiple mutations in the ryanodine receptor (RyR) and acetylcholinesterase 1 (AChE1), leading to target-site resistance to chlorantraniliprole and triazophos, respectively. In contrast, the absence of mutations in the glutamate-gated chloride channel (GluCl) and α6 nicotinic acetylcholine receptor (nAChR α6) subunit suggested that nontarget site mechanisms contribute to the multiple-insecticide resistance phenotypes observed in <i>C. suppressalis</i>. In this regard, we revealed overexpression of the uridine 5'-diphospho-glycosyltransferase <i>UGT33AF1</i> and cytochrome P450 <i>CYP6AB45</i> in <i>C. suppressalis</i> field populations. Functional characterization using transgenic <i>Drosophila</i> demonstrated that UGT33AF1 confers resistance against multiple insecticides <i>in vivo</i>, whereas CYP6AB45 does not appear to contribute to resistance. Collectively, our findings reveal the current status of resistance of <i>C. suppressalis</i> to insecticides in China and uncover a diverse profile of resistance mechanisms in this species. These findings provide a foundation for the development of sustainable strategies to effectively manage and control this pest.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1021/acs.jafc.4c06538
Yao Tang, Ya Wang, Xiaoqiu Guo, Ying Xu, Zhenchao Wang, Jian Wu
Coumarin, a naturally occurring active ingredient with various biological activities in pesticides, is commonly found in plants belonging to the Rutaceae and Apiaceae families. Thanks to its unique structural properties and natural benefits, coumarin and its derivatives exhibit a wide range of physiological activities, including insecticidal, antifungal, antibacterial, herbicidal, and antiviral properties. These compounds have attracted considerable interest in the field of pesticide development, although there is a lack of comprehensive reviews on their use in pesticides. This Review aims to provide a detailed overview of the applications of coumarin and its derivatives in pesticides, covering biological activities, structure-activity relationship analyses, and mechanisms of action. It is hoped that this Review will offer new insights into the discovery and mechanisms of these compounds in pesticide development.
{"title":"Recent Advances of Coumarin-Type Compounds in Discovery of Pesticides.","authors":"Yao Tang, Ya Wang, Xiaoqiu Guo, Ying Xu, Zhenchao Wang, Jian Wu","doi":"10.1021/acs.jafc.4c06538","DOIUrl":"https://doi.org/10.1021/acs.jafc.4c06538","url":null,"abstract":"<p><p>Coumarin, a naturally occurring active ingredient with various biological activities in pesticides, is commonly found in plants belonging to the Rutaceae and Apiaceae families. Thanks to its unique structural properties and natural benefits, coumarin and its derivatives exhibit a wide range of physiological activities, including insecticidal, antifungal, antibacterial, herbicidal, and antiviral properties. These compounds have attracted considerable interest in the field of pesticide development, although there is a lack of comprehensive reviews on their use in pesticides. This Review aims to provide a detailed overview of the applications of coumarin and its derivatives in pesticides, covering biological activities, structure-activity relationship analyses, and mechanisms of action. It is hoped that this Review will offer new insights into the discovery and mechanisms of these compounds in pesticide development.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1021/acs.jafc.4c09194
Guowen Li, Mengjia Chao, Hengyu Xu, Shengmei Tai, Minxin Mao, Wenbo Cao, Chifang Peng, Wei Ma, Yongwei Feng, Zhouping Wang
New strategies for enhancing the fluorescence emission of metal nanoclusters (MNCs) are very crucial for the highly sensitive sensing of food hazards. In this work, we prepared MNC supraparticles (Sc-CB/AuNCs) by simultaneously introducing cucurbit[7]uril (CB[7]) and Sc3+ ions into ATT-AuNCs for the first time. The obtained supraparticles exhibited strong emission enhancement due to synergistic aggregation-induced emission enhancement and restriction of intramolecular motion effects. Notably, the fluorescence of ATT-AuNCs was enhanced by 24-fold due to the combination of CB[7] and Sc3+ ions, and the quantum yield reached 69.1%. Moreover, we found that tetracycline (TC) could bind to the Sc-CB/AuNCs through simultaneous host-guest recognition and ionic complexation, which effectively quenched the Sc-CB/AuNCs through the synergy of photoinduced electron transfer and inner filter effect. Based on the above multiple interactions between TC and Sc-CB/AuNCs, an ultrasensitive sensing method for TC was constructed with an LOD of 0.3 nM. Furthermore, a portable fluorescent gel sensor was constructed and successfully used for TC detection in honey samples. The test took only 2 min. This work not only provided a simple and effective fluorescence enhancement strategy for MNCs but also offered a novel sensing strategy, which may largely extend the potential of host-guest recognition-based sensors for food and environmental hazards.
{"title":"Preparation of Metal Nanocluster Supraparticles for Ultrasensitive Sensing of Tetracycline Based on Multiple Interactions between a Target and Sensor.","authors":"Guowen Li, Mengjia Chao, Hengyu Xu, Shengmei Tai, Minxin Mao, Wenbo Cao, Chifang Peng, Wei Ma, Yongwei Feng, Zhouping Wang","doi":"10.1021/acs.jafc.4c09194","DOIUrl":"10.1021/acs.jafc.4c09194","url":null,"abstract":"<p><p>New strategies for enhancing the fluorescence emission of metal nanoclusters (MNCs) are very crucial for the highly sensitive sensing of food hazards. In this work, we prepared MNC supraparticles (Sc-CB/AuNCs) by simultaneously introducing cucurbit[7]uril (CB[7]) and Sc<sup>3+</sup> ions into ATT-AuNCs for the first time. The obtained supraparticles exhibited strong emission enhancement due to synergistic aggregation-induced emission enhancement and restriction of intramolecular motion effects. Notably, the fluorescence of ATT-AuNCs was enhanced by 24-fold due to the combination of CB[7] and Sc<sup>3+</sup> ions, and the quantum yield reached 69.1%. Moreover, we found that tetracycline (TC) could bind to the Sc-CB/AuNCs through simultaneous host-guest recognition and ionic complexation, which effectively quenched the Sc-CB/AuNCs through the synergy of photoinduced electron transfer and inner filter effect. Based on the above multiple interactions between TC and Sc-CB/AuNCs, an ultrasensitive sensing method for TC was constructed with an LOD of 0.3 nM. Furthermore, a portable fluorescent gel sensor was constructed and successfully used for TC detection in honey samples. The test took only 2 min. This work not only provided a simple and effective fluorescence enhancement strategy for MNCs but also offered a novel sensing strategy, which may largely extend the potential of host-guest recognition-based sensors for food and environmental hazards.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}