High Density 3D Carbon Tube Nanoarray Electrode Boosting the Capacitance of Filter Capacitor.

IF 26.6 1区 材料科学 Q1 Engineering Nano-Micro Letters Pub Date : 2024-07-03 DOI:10.1007/s40820-024-01458-6
Gan Chen, Fangming Han, Huachun Ma, Pei Li, Ziyan Zhou, Pengxiang Wang, Xiaoyan Li, Guowen Meng, Bingqing Wei
{"title":"High Density 3D Carbon Tube Nanoarray Electrode Boosting the Capacitance of Filter Capacitor.","authors":"Gan Chen, Fangming Han, Huachun Ma, Pei Li, Ziyan Zhou, Pengxiang Wang, Xiaoyan Li, Guowen Meng, Bingqing Wei","doi":"10.1007/s40820-024-01458-6","DOIUrl":null,"url":null,"abstract":"<p><p>Electric double-layer capacitors (EDLCs) with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors. Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs' performance. However, controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs. Herein, a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide (3D-AAO) template is achieved, and 3D compactly arranged carbon tube (3D-CACT) nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon. The 3D-CACT electrodes demonstrate a high surface area of 253.0 m<sup>2</sup> g<sup>-1</sup>, a D/G band intensity ratio of 0.94, and a C/O atomic ratio of 8. As a result, the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm<sup>-2</sup> at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units. The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits, aiding power system miniaturization.</p>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222361/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-024-01458-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Electric double-layer capacitors (EDLCs) with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors. Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs' performance. However, controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs. Herein, a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide (3D-AAO) template is achieved, and 3D compactly arranged carbon tube (3D-CACT) nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon. The 3D-CACT electrodes demonstrate a high surface area of 253.0 m2 g-1, a D/G band intensity ratio of 0.94, and a C/O atomic ratio of 8. As a result, the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm-2 at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units. The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits, aiding power system miniaturization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高密度三维碳管纳米阵列电极可提高滤波电容器的电容。
具有快速频率响应的双电层电容器(EDLC)被认为是体积庞大的商用铝电解电容器的小型替代品。创建具有精确排列和顺畅离子通道的碳基纳米阵列电极对于提高 EDLC 的性能至关重要。然而,控制以大孔为主的纳米阵列电极的密度对提高线滤波电解电容器的电容量构成了挑战。在此,我们采用一种简单的技术来微调三维纳米多孔阳极氧化铝(3D-AAO)模板中垂直孔的直径和间距,并利用纳米多孔 3D-AAO 模板辅助碳的化学气相沉积,创建了三维紧凑排列碳管(3D-CACT)纳米阵列,作为对称 EDLC 的电极。因此,基于高密度 3D-CT 纳米阵列的夹层型 EDLC 在 120 Hz 时的比面积电容达到了创纪录的 3.23 mF cm-2,并且由于紧密排列的 CT 单元垂直排列且高度有序,因此具有超快的频率响应。基于 3D-CT 纳米阵列电极的 EDLC 可用作集成电路中的线路滤波器,有助于实现电力系统的小型化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
期刊最新文献
Optimization Strategies of Na3V2(PO4)3 Cathode Materials for Sodium-Ion Batteries High Fe-Loading Single-Atom Catalyst Boosts ROS Production by Density Effect for Efficient Antibacterial Therapy Aligned Ion Conduction Pathway of Polyrotaxane-Based Electrolyte with Dispersed Hydrophobic Chains for Solid-State Lithium–Oxygen Batteries Engineered Cancer Nanovaccines: A New Frontier in Cancer Therapy Exploring Nanoscale Perovskite Materials for Next-Generation Photodetectors: A Comprehensive Review and Future Directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1