Conductive elastomers combining micromechanical sensitivity, lightweight adaptability, and environmental sustainability are critically needed for advanced flexible electronics requiring precise responsiveness and long-term wearability; however, the integration of these properties remains a significant challenge. Here, we present a biomass-derived conductive elastomer featuring a rationally engineered dynamic crosslinked network integrated with a tunable microporous architecture. This structural design imparts pronounced micromechanical sensitivity, an ultralow density (~ 0.25 g cm−3), and superior mechanical compliance for adaptive deformation. Moreover, the unique micro-spring effect derived from the porous architecture ensures exceptional stretchability (> 500% elongation at break) and superior resilience, delivering immediate and stable electrical response under both subtle (< 1%) and large (> 200%) mechanical stimuli. Intrinsic dynamic interactions endow the elastomer with efficient room temperature self-healing and complete recyclability without compromising performance. First-principles simulations clarify the mechanisms behind micropore formation and the resulting functionality. Beyond its facile and mild fabrication process, this work establishes a scalable route toward high-performance, sustainable conductive elastomers tailored for next-generation soft electronics.