Production and molecular weight variation of poly-γ-glutamic acid using a recombinant Bacillus subtilis with various Pgs-component ratios.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-09-20 DOI:10.1093/bbb/zbae093
Kazuhisa Sawada, Hiroshi Hagihara, Yasushi Takimura, Masakazu Kataoka
{"title":"Production and molecular weight variation of poly-γ-glutamic acid using a recombinant Bacillus subtilis with various Pgs-component ratios.","authors":"Kazuhisa Sawada, Hiroshi Hagihara, Yasushi Takimura, Masakazu Kataoka","doi":"10.1093/bbb/zbae093","DOIUrl":null,"url":null,"abstract":"<p><p>Poly-γ-glutamic acid (PGA) has been of interest as a sustainable biopolymer in industrial applications. PGA biosynthesis in Bacillus subtilis is catalyzed by a transmembrane protein complex comprising PgsB, PgsC, and PgsA. To determine the Pgs component responsible for PGA overproduction, we constructed recombinants in which the promoter of the host-derived pgs gene was replaced with another host-derived gene promoter. These recombinants were then transformed using high-copy-number plasmids with various pgs-gene combinations to enhance Pgs component in different ratios. Subsequently, PGA production was investigated in batch cultures with l-glutamate supplemented medium. The recombinant strain enhanced with pgsB alone significantly overproduced PGA (maximum production 35.8 g/L) than either the pgsC- or pgsA-enhanced strain. The molecular weight of the PGA produced with the pgsB-enhanced strain was also greater than that for the pgsC- or pgsA-enhanced strain (approximately 10-fold). Hence, PgsB enhancement alone contributes to PGA overproduction with increased molecular weight.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae093","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Poly-γ-glutamic acid (PGA) has been of interest as a sustainable biopolymer in industrial applications. PGA biosynthesis in Bacillus subtilis is catalyzed by a transmembrane protein complex comprising PgsB, PgsC, and PgsA. To determine the Pgs component responsible for PGA overproduction, we constructed recombinants in which the promoter of the host-derived pgs gene was replaced with another host-derived gene promoter. These recombinants were then transformed using high-copy-number plasmids with various pgs-gene combinations to enhance Pgs component in different ratios. Subsequently, PGA production was investigated in batch cultures with l-glutamate supplemented medium. The recombinant strain enhanced with pgsB alone significantly overproduced PGA (maximum production 35.8 g/L) than either the pgsC- or pgsA-enhanced strain. The molecular weight of the PGA produced with the pgsB-enhanced strain was also greater than that for the pgsC- or pgsA-enhanced strain (approximately 10-fold). Hence, PgsB enhancement alone contributes to PGA overproduction with increased molecular weight.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用重组枯草芽孢杆菌以不同的 pgs-组分比例生产聚-γ-谷氨酸并改变其分子量。
聚γ-谷氨酸(PGA)作为一种可持续生物聚合物,在工业应用中一直备受关注。枯草芽孢杆菌中的 PGA 生物合成是由 PgsB、PgsC 和 PgsA 组成的跨膜蛋白复合物催化的。为了确定导致 PGA 过量产生的 Pgs 成分,我们构建了重组子,其中宿主衍生 pgs 基因的启动子被另一个宿主衍生基因的启动子取代。然后,使用带有不同 pgs 基因组合的高拷贝数质粒转化这些重组子,以不同比例增强 Pgs 成分。随后,在补充了 l-谷氨酸的培养基中进行批量培养,研究 PGA 的生产情况。与 pgsC 或 pgsA 增强菌株相比,仅用 pgsB 增强的重组菌株明显多产 PGA(最大产量为 35.8 gL-1)。pgsB 增强菌株产生的 PGA 的分子量也比 pgsC 或 pgsA 增强菌株大(约 10 倍)。因此,仅 PgsB 增强就会导致 PGA 生产过剩并增加分子量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1