Inflammation primes the murine kidney for recovery by activating AZIN1 adenosine-to-inosine editing.

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Journal of Clinical Investigation Pub Date : 2024-09-03 DOI:10.1172/JCI180117
Segewkal Hawaze Heruye, Jered Myslinski, Chao Zeng, Amy Zollman, Shinichi Makino, Azuma Nanamatsu, Quoseena Mir, Sarath Chandra Janga, Emma H Doud, Michael T Eadon, Bernhard Maier, Michiaki Hamada, Tuan M Tran, Pierre C Dagher, Takashi Hato
{"title":"Inflammation primes the murine kidney for recovery by activating AZIN1 adenosine-to-inosine editing.","authors":"Segewkal Hawaze Heruye, Jered Myslinski, Chao Zeng, Amy Zollman, Shinichi Makino, Azuma Nanamatsu, Quoseena Mir, Sarath Chandra Janga, Emma H Doud, Michael T Eadon, Bernhard Maier, Michiaki Hamada, Tuan M Tran, Pierre C Dagher, Takashi Hato","doi":"10.1172/JCI180117","DOIUrl":null,"url":null,"abstract":"<p><p>The progression of kidney disease varies among individuals, but a general methodology to quantify disease timelines is lacking. Particularly challenging is the task of determining the potential for recovery from acute kidney injury following various insults. Here, we report that quantitation of post-transcriptional adenosine-to-inosine (A-to-I) RNA editing offers a distinct genome-wide signature, enabling the delineation of disease trajectories in the kidney. A well-defined murine model of endotoxemia permitted the identification of the origin and extent of A-to-I editing, along with temporally discrete signatures of double-stranded RNA stress and adenosine deaminase isoform switching. We found that A-to-I editing of antizyme inhibitor 1 (AZIN1), a positive regulator of polyamine biosynthesis, serves as a particularly useful temporal landmark during endotoxemia. Our data indicate that AZIN1 A-to-I editing, triggered by preceding inflammation, primes the kidney and activates endogenous recovery mechanisms. By comparing genetically modified human cell lines and mice locked in either A-to-I-edited or uneditable states, we uncovered that AZIN1 A-to-I editing not only enhances polyamine biosynthesis but also engages glycolysis and nicotinamide biosynthesis to drive the recovery phenotype. Our findings implicate that quantifying AZIN1 A-to-I editing could potentially identify individuals who have transitioned to an endogenous recovery phase. This phase would reflect their past inflammation and indicate their potential for future recovery.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364396/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI180117","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The progression of kidney disease varies among individuals, but a general methodology to quantify disease timelines is lacking. Particularly challenging is the task of determining the potential for recovery from acute kidney injury following various insults. Here, we report that quantitation of post-transcriptional adenosine-to-inosine (A-to-I) RNA editing offers a distinct genome-wide signature, enabling the delineation of disease trajectories in the kidney. A well-defined murine model of endotoxemia permitted the identification of the origin and extent of A-to-I editing, along with temporally discrete signatures of double-stranded RNA stress and adenosine deaminase isoform switching. We found that A-to-I editing of antizyme inhibitor 1 (AZIN1), a positive regulator of polyamine biosynthesis, serves as a particularly useful temporal landmark during endotoxemia. Our data indicate that AZIN1 A-to-I editing, triggered by preceding inflammation, primes the kidney and activates endogenous recovery mechanisms. By comparing genetically modified human cell lines and mice locked in either A-to-I-edited or uneditable states, we uncovered that AZIN1 A-to-I editing not only enhances polyamine biosynthesis but also engages glycolysis and nicotinamide biosynthesis to drive the recovery phenotype. Our findings implicate that quantifying AZIN1 A-to-I editing could potentially identify individuals who have transitioned to an endogenous recovery phase. This phase would reflect their past inflammation and indicate their potential for future recovery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
炎症通过激活 AZIN1 腺苷酸转肌苷酸编辑作用,为小鼠肾脏的恢复做好准备。
肾脏疾病的进展因人而异,但目前还缺乏量化疾病时间表的通用方法。尤其具有挑战性的任务是确定各种损伤后急性肾损伤的恢复潜力。在这里,我们报告了转录后腺苷酸转肌苷酸(A-to-I)RNA 编辑的量化提供了一个独特的全基因组特征,使我们能够描绘肾脏的疾病轨迹。通过定义明确的小鼠内毒素血症模型,我们确定了A-I编辑的起源和程度,以及双链RNA压力和腺苷脱氨酶同工酶转换的时间离散特征。我们发现,在内毒素血症期间,多胺生物合成的正调控因子抗酶抑制剂1(AZIN1)的A-I编辑是一个特别有用的时间标志。我们的数据表明,AZIN1 A-to-I编辑由先前的炎症触发,为肾脏提供能量并激活内源性恢复机制。通过比较基因修饰的人类细胞系和锁定在A-to-I编辑或不可编辑状态的小鼠,我们发现AZIN1 A-to-I编辑不仅能增强多胺生物合成,还能促进糖酵解和烟酰胺生物合成,从而驱动恢复表型。我们的研究结果表明,量化 AZIN1 A 到 I 编辑有可能识别已过渡到内源性恢复阶段的个体。这一阶段将反映他们过去的炎症情况,并显示他们未来的恢复潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
期刊最新文献
Mechanosensitive channels TMEM63A and TMEM63B mediate lung inflation-induced surfactant secretion. TET3-overexpressing macrophages promote endometriosis. Egfl6 promotes ovarian cancer progression by enhancing the immunosuppressive functions of tumor-associated myeloid cells. Accumulation of Epstein-Barr virus-induced cross-reactive immune responses is associated with multiple sclerosis. Activation of STAT3-mediated ciliated cell survival protects against severe infection by respiratory syncytial virus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1