{"title":"Futility Interim Analysis Based on Probability of Success Using a Surrogate Endpoint.","authors":"Ronan Fougeray, Loïck Vidot, Marco Ratta, Zhaoyang Teng, Donia Skanji, Gaëlle Saint-Hilary","doi":"10.1002/pst.2410","DOIUrl":null,"url":null,"abstract":"<p><p>In clinical trials with time-to-event data, the evaluation of treatment efficacy can be a long and complex process, especially when considering long-term primary endpoints. Using surrogate endpoints to correlate the primary endpoint has become a common practice to accelerate decision-making. Moreover, the ethical need to minimize sample size and the practical need to optimize available resources have encouraged the scientific community to develop methodologies that leverage historical data. Relying on the general theory of group sequential design and using a Bayesian framework, the methodology described in this paper exploits a documented historical relationship between a clinical \"final\" endpoint and a surrogate endpoint to build an informative prior for the primary endpoint, using surrogate data from an early interim analysis of the clinical trial. The predictive probability of success of the trial is then used to define a futility-stopping rule. The methodology demonstrates substantial enhancements in trial operating characteristics when there is a good agreement between current and historical data. Furthermore, incorporating a robust approach that combines the surrogate prior with a vague component mitigates the impact of the minor prior-data conflicts while maintaining acceptable performance even in the presence of significant prior-data conflicts. The proposed methodology was applied to design a Phase III clinical trial in metastatic colorectal cancer, with overall survival as the primary endpoint and progression-free survival as the surrogate endpoint.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2410","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
In clinical trials with time-to-event data, the evaluation of treatment efficacy can be a long and complex process, especially when considering long-term primary endpoints. Using surrogate endpoints to correlate the primary endpoint has become a common practice to accelerate decision-making. Moreover, the ethical need to minimize sample size and the practical need to optimize available resources have encouraged the scientific community to develop methodologies that leverage historical data. Relying on the general theory of group sequential design and using a Bayesian framework, the methodology described in this paper exploits a documented historical relationship between a clinical "final" endpoint and a surrogate endpoint to build an informative prior for the primary endpoint, using surrogate data from an early interim analysis of the clinical trial. The predictive probability of success of the trial is then used to define a futility-stopping rule. The methodology demonstrates substantial enhancements in trial operating characteristics when there is a good agreement between current and historical data. Furthermore, incorporating a robust approach that combines the surrogate prior with a vague component mitigates the impact of the minor prior-data conflicts while maintaining acceptable performance even in the presence of significant prior-data conflicts. The proposed methodology was applied to design a Phase III clinical trial in metastatic colorectal cancer, with overall survival as the primary endpoint and progression-free survival as the surrogate endpoint.
在使用时间到事件数据的临床试验中,疗效评估可能是一个漫长而复杂的过程,尤其是在考虑长期主要终点时。使用替代终点来关联主要终点已成为加快决策的一种常见做法。此外,尽量减少样本量的道德需求和优化可用资源的实际需求也促使科学界开发出利用历史数据的方法。本文介绍的方法以分组序列设计的一般理论为基础,采用贝叶斯框架,利用临床 "最终 "终点与代用终点之间有据可查的历史关系,利用临床试验早期中期分析的代用数据,为主要终点建立一个信息先验。然后,利用试验成功的预测概率来定义徒劳性终止规则。该方法表明,当当前数据与历史数据高度一致时,试验运行特征会得到大幅提升。此外,将代理先验与模糊成分相结合的稳健方法减轻了轻微先验数据冲突的影响,同时即使存在严重的先验数据冲突,也能保持可接受的性能。所提出的方法被应用于设计转移性结直肠癌的 III 期临床试验,以总生存期为主要终点,无进展生存期为替代终点。
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.