Mudskipper detects combinatorial RNA binding protein interactions in multiplexed CLIP data.

IF 11.1 Q1 CELL BIOLOGY Cell genomics Pub Date : 2024-07-10 Epub Date: 2024-07-01 DOI:10.1016/j.xgen.2024.100603
Hsuanlin Her, Katherine L Rothamel, Grady G Nguyen, Evan A Boyle, Gene W Yeo
{"title":"Mudskipper detects combinatorial RNA binding protein interactions in multiplexed CLIP data.","authors":"Hsuanlin Her, Katherine L Rothamel, Grady G Nguyen, Evan A Boyle, Gene W Yeo","doi":"10.1016/j.xgen.2024.100603","DOIUrl":null,"url":null,"abstract":"<p><p>The uncovering of protein-RNA interactions enables a deeper understanding of RNA processing. Recent multiplexed crosslinking and immunoprecipitation (CLIP) technologies such as antibody-barcoded eCLIP (ABC) dramatically increase the throughput of mapping RNA binding protein (RBP) binding sites. However, multiplex CLIP datasets are multivariate, and each RBP suffers non-uniform signal-to-noise ratio. To address this, we developed Mudskipper, a versatile computational suite comprising two components: a Dirichlet multinomial mixture model to account for the multivariate nature of ABC datasets and a softmasking approach that identifies and removes non-specific protein-RNA interactions in RBPs with low signal-to-noise ratio. Mudskipper demonstrates superior precision and recall over existing tools on multiplex datasets and supports analysis of repetitive elements and small non-coding RNAs. Our findings unravel splicing outcomes and variant-associated disruptions, enabling higher-throughput investigations into diseases and regulation mediated by RBPs.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100603"},"PeriodicalIF":11.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The uncovering of protein-RNA interactions enables a deeper understanding of RNA processing. Recent multiplexed crosslinking and immunoprecipitation (CLIP) technologies such as antibody-barcoded eCLIP (ABC) dramatically increase the throughput of mapping RNA binding protein (RBP) binding sites. However, multiplex CLIP datasets are multivariate, and each RBP suffers non-uniform signal-to-noise ratio. To address this, we developed Mudskipper, a versatile computational suite comprising two components: a Dirichlet multinomial mixture model to account for the multivariate nature of ABC datasets and a softmasking approach that identifies and removes non-specific protein-RNA interactions in RBPs with low signal-to-noise ratio. Mudskipper demonstrates superior precision and recall over existing tools on multiplex datasets and supports analysis of repetitive elements and small non-coding RNAs. Our findings unravel splicing outcomes and variant-associated disruptions, enabling higher-throughput investigations into diseases and regulation mediated by RBPs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mudskipper 在多重 CLIP 数据中检测组合 RNA 结合蛋白的相互作用。
揭示蛋白质与 RNA 的相互作用有助于加深对 RNA 加工的理解。最近的多重交联和免疫沉淀(CLIP)技术,如抗体条形码 eCLIP(ABC),极大地提高了绘制 RNA 结合蛋白(RBP)结合位点的通量。然而,多重 CLIP 数据集是多变量的,每个 RBP 的信噪比不均匀。为了解决这个问题,我们开发了 Mudskipper,这是一个多功能计算套件,由两个部分组成:一个是 Dirichlet 多叉混合物模型,用于解释 ABC 数据集的多变量性质;另一个是软掩蔽方法,用于识别和去除信噪比低的 RBP 中的非特异性蛋白质-RNA 相互作用。在多重数据集上,Mudskipper 的精确度和召回率均优于现有工具,并支持对重复元素和小型非编码 RNA 的分析。我们的研究结果揭示了剪接结果和变异相关的破坏,从而能够对由 RBPs 介导的疾病和调控进行更高通量的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
A combined deep learning framework for mammalian m6A site prediction. Analysis of single-cell CRISPR perturbations indicates that enhancers predominantly act multiplicatively. Complex structural variation is prevalent and highly pathogenic in pediatric solid tumors. Gene regulatory network inference from CRISPR perturbations in primary CD4+ T cells elucidates the genomic basis of immune disease. Leveraging genomes to support conservation and bioeconomy policies in a megadiverse country.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1