Inferring Population HIV Viral Load From a Single HIV Clinic's Electronic Health Record: Simulation Study With a Real-World Example.

Neal D Goldstein, Justin Jones, Deborah Kahal, Igor Burstyn
{"title":"Inferring Population HIV Viral Load From a Single HIV Clinic's Electronic Health Record: Simulation Study With a Real-World Example.","authors":"Neal D Goldstein, Justin Jones, Deborah Kahal, Igor Burstyn","doi":"10.2196/58058","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Population viral load (VL), the most comprehensive measure of the HIV transmission potential, cannot be directly measured due to lack of complete sampling of all people with HIV.</p><p><strong>Objective: </strong>A given HIV clinic's electronic health record (EHR), a biased sample of this population, may be used to attempt to impute this measure.</p><p><strong>Methods: </strong>We simulated a population of 10,000 individuals with VL calibrated to surveillance data with a geometric mean of 4449 copies/mL. We sampled 3 hypothetical EHRs from (A) the source population, (B) those diagnosed, and (C) those retained in care. Our analysis imputed population VL from each EHR using sampling weights followed by Bayesian adjustment. These methods were then tested using EHR data from an HIV clinic in Delaware.</p><p><strong>Results: </strong>Following weighting, the estimates moved in the direction of the population value with correspondingly wider 95% intervals as follows: clinic A: 4364 (95% interval 1963-11,132) copies/mL; clinic B: 4420 (95% interval 1913-10,199) copies/mL; and clinic C: 242 (95% interval 113-563) copies/mL. Bayesian-adjusted weighting further improved the estimate.</p><p><strong>Conclusions: </strong>These findings suggest that methodological adjustments are ineffective for estimating population VL from a single clinic's EHR without the resource-intensive elucidation of an informative prior.</p>","PeriodicalId":74345,"journal":{"name":"Online journal of public health informatics","volume":"16 ","pages":"e58058"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255534/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online journal of public health informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/58058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Population viral load (VL), the most comprehensive measure of the HIV transmission potential, cannot be directly measured due to lack of complete sampling of all people with HIV.

Objective: A given HIV clinic's electronic health record (EHR), a biased sample of this population, may be used to attempt to impute this measure.

Methods: We simulated a population of 10,000 individuals with VL calibrated to surveillance data with a geometric mean of 4449 copies/mL. We sampled 3 hypothetical EHRs from (A) the source population, (B) those diagnosed, and (C) those retained in care. Our analysis imputed population VL from each EHR using sampling weights followed by Bayesian adjustment. These methods were then tested using EHR data from an HIV clinic in Delaware.

Results: Following weighting, the estimates moved in the direction of the population value with correspondingly wider 95% intervals as follows: clinic A: 4364 (95% interval 1963-11,132) copies/mL; clinic B: 4420 (95% interval 1913-10,199) copies/mL; and clinic C: 242 (95% interval 113-563) copies/mL. Bayesian-adjusted weighting further improved the estimate.

Conclusions: These findings suggest that methodological adjustments are ineffective for estimating population VL from a single clinic's EHR without the resource-intensive elucidation of an informative prior.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从单个 HIV 诊所的电子健康记录推断人群 HIV 病毒载量:以真实世界为例的模拟研究。
背景:人口病毒载量(VL)是衡量艾滋病毒传播可能性的最全面指标:人口病毒载量(VL)是衡量 HIV 传播可能性的最全面指标,但由于缺乏对所有 HIV 感染者的完整抽样,因此无法直接测量:目标:特定 HIV 诊所的电子健康记录(EHR)是这一人群的一个有偏差的样本,可用于尝试估算这一指标:我们模拟了一个 10,000 人的群体,其 VL 根据监测数据校准,几何平均数为 4449 copies/mL。我们从(A)源人群、(B)确诊人群和(C)留观人群中抽取了 3 份假设的电子病历。我们的分析使用抽样权重对每份 EHR 的人群 VL 进行估算,然后进行贝叶斯调整。然后使用特拉华州一家艾滋病诊所的电子病历数据对这些方法进行了测试:加权后,估计值向人群值的方向移动,95% 区间相应变宽如下:A 诊所:4364(95% 区间 1963-11132)拷贝数/毫升;B 诊所:4420(95% 区间 1913-10199)拷贝数/毫升;C 诊所:242(95% 区间 113-563)拷贝数/毫升。贝叶斯调整加权进一步提高了估计值:这些研究结果表明,如果不对信息先验进行资源密集型的阐明,方法学调整对于从单个诊所的电子病历中估计人群 VL 是无效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Population Digital Health: Continuous Health Monitoring and Profiling at Scale. Rank Ordered Design Attributes for Health Care Dashboards Including Artificial Intelligence: Usability Study. Attitudes of Health Professionals Toward Digital Health Data Security in Northwest Ethiopia: Cross-Sectional Study. Contact Tracing Different Age Groups During the COVID-19 Pandemic: Retrospective Study From South-West Germany. Data Analytics to Support Policy Making for Noncommunicable Diseases: Scoping Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1