{"title":"Topology-Optimized Metal Structure for Broadband Wavefront Engineering of Guided Terahertz Waves","authors":"Shinya Nishijima;Yasuaki Monnai","doi":"10.1109/TTHZ.2024.3394295","DOIUrl":null,"url":null,"abstract":"We introduce a topology-optimized metal structure that attains broadband wavefront engineering of guided terahertz waves. While the recent demonstrations of dielectric-free terahertz lenses composed of curved metal surfaces facilitate low-loss and point source-coupled beamforming for the fundamental transverse-electric guided terahertz waves, such designs are significantly constrained in bandwidth due to the frequency dispersion of the mode. To address this challenge, this article employs topology optimization to tailor the effective refractive index profile via the surface structure, achieving broadband manipulation of guided terahertz waves. Experiments around 300 GHz demonstrate the capability to produce a directional beam with an about 15 mm waist from a point source over a 50 GHz bandwidth. Our approach presents a versatile design framework for integrated terahertz systems.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"14 4","pages":"495-501"},"PeriodicalIF":3.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Terahertz Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10508994/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a topology-optimized metal structure that attains broadband wavefront engineering of guided terahertz waves. While the recent demonstrations of dielectric-free terahertz lenses composed of curved metal surfaces facilitate low-loss and point source-coupled beamforming for the fundamental transverse-electric guided terahertz waves, such designs are significantly constrained in bandwidth due to the frequency dispersion of the mode. To address this challenge, this article employs topology optimization to tailor the effective refractive index profile via the surface structure, achieving broadband manipulation of guided terahertz waves. Experiments around 300 GHz demonstrate the capability to produce a directional beam with an about 15 mm waist from a point source over a 50 GHz bandwidth. Our approach presents a versatile design framework for integrated terahertz systems.
期刊介绍:
IEEE Transactions on Terahertz Science and Technology focuses on original research on Terahertz theory, techniques, and applications as they relate to components, devices, circuits, and systems involving the generation, transmission, and detection of Terahertz waves.