FTN-GFDM detection based on reduced-complexity soft sphere decoding integrated with polar codes

IF 2.9 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Communications and Networks Pub Date : 2024-06-01 DOI:10.23919/JCN.2024.000018
Mariana Baracat de Mello;Luciano Leonel Mendes;Daniely Gomes Silva;Paulo Ricardo Branco da Silva;Tiago Cardoso Barbosa
{"title":"FTN-GFDM detection based on reduced-complexity soft sphere decoding integrated with polar codes","authors":"Mariana Baracat de Mello;Luciano Leonel Mendes;Daniely Gomes Silva;Paulo Ricardo Branco da Silva;Tiago Cardoso Barbosa","doi":"10.23919/JCN.2024.000018","DOIUrl":null,"url":null,"abstract":"In remote rural areas, it is not possible to employ massive multiple-input multiple-output (MIMO), small cells, and ultra-dense networks (UDNs) with the aim of increasing throughput. A solution is to improve the waveform spectral efficiency, integrating faster than Nyquist (FTN) signaling with generalized frequency division multiplexing (GFDM). However, this presents high self-interference in the time and frequency domains, requiring dedicated detectors for performance loss mitigation. Hard decision detection schemes primarily designed for MIMO have been adapted to detect FTN-GFDM signals without degradation of the uncoded bit error rate (BER), but these schemes are suboptimal in terms of capacity as they do not provide all the information contained in log-likelihood ratios (LLRs). We design and evaluate in this paper a soft sphere detector (SD) algorithm for FTN-GFDM that can be integrated with state-of-the-art forward error control (FEC) decoders for good BER performance over mobile channels. The SD detector is combined with polar codes, and the BER and complexity are evaluated for different channel models. The results show that FTN-GFDM can provide high spectrum efficiency gains without significant coded BER losses and with affordable complexity on the receiver side, which makes this waveform an interesting candidate for mobile networks in remote areas.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579719","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10579719/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In remote rural areas, it is not possible to employ massive multiple-input multiple-output (MIMO), small cells, and ultra-dense networks (UDNs) with the aim of increasing throughput. A solution is to improve the waveform spectral efficiency, integrating faster than Nyquist (FTN) signaling with generalized frequency division multiplexing (GFDM). However, this presents high self-interference in the time and frequency domains, requiring dedicated detectors for performance loss mitigation. Hard decision detection schemes primarily designed for MIMO have been adapted to detect FTN-GFDM signals without degradation of the uncoded bit error rate (BER), but these schemes are suboptimal in terms of capacity as they do not provide all the information contained in log-likelihood ratios (LLRs). We design and evaluate in this paper a soft sphere detector (SD) algorithm for FTN-GFDM that can be integrated with state-of-the-art forward error control (FEC) decoders for good BER performance over mobile channels. The SD detector is combined with polar codes, and the BER and complexity are evaluated for different channel models. The results show that FTN-GFDM can provide high spectrum efficiency gains without significant coded BER losses and with affordable complexity on the receiver side, which makes this waveform an interesting candidate for mobile networks in remote areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于与极地编码集成的降低复杂度软球解码的 FTN-GFDM 检测
在偏远的农村地区,不可能采用大规模多输入多输出(MIMO)、小蜂窝和超密集网络(UDN)来提高吞吐量。一种解决方案是提高波形频谱效率,将快于奈奎斯特(FTN)信令与广义频分复用(GFDM)整合在一起。然而,这会在时域和频域产生较高的自干扰,需要专用的检测器来减少性能损失。主要为多输入多输出(MIMO)设计的硬决策检测方案已被用于检测 FTN-GFDM 信号而不会降低未编码误码率(BER),但这些方案在容量方面并不理想,因为它们不能提供对数似然比(LLR)中包含的所有信息。本文设计并评估了一种用于 FTN-GFDM 的软球检测器(SD)算法,该算法可与最先进的前向差错控制(FEC)解码器集成,在移动信道上实现良好的误码率性能。SD 检测器与极性编码相结合,并对不同信道模型的误码率和复杂性进行了评估。结果表明,FTN-GFDM 可以提供较高的频谱效率增益,而不会造成显著的编码误码率损失,接收器端的复杂度也在可承受范围之内,这使得这种波形成为偏远地区移动网络的理想候选波形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
5.60%
发文量
66
审稿时长
14.4 months
期刊介绍: The JOURNAL OF COMMUNICATIONS AND NETWORKS is published six times per year, and is committed to publishing high-quality papers that advance the state-of-the-art and practical applications of communications and information networks. Theoretical research contributions presenting new techniques, concepts, or analyses, applied contributions reporting on experiences and experiments, and tutorial expositions of permanent reference value are welcome. The subjects covered by this journal include all topics in communication theory and techniques, communication systems, and information networks. COMMUNICATION THEORY AND SYSTEMS WIRELESS COMMUNICATIONS NETWORKS AND SERVICES.
期刊最新文献
Advertisement Editorial board Front cover Back cover copyright transferform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1