Copper Foil Substrate Enables Planar Indium Plating for Ultrahigh‐Efficiency and Long‐Lifespan Aqueous Trivalent Metal Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-07-02 DOI:10.1002/adfm.202407342
Songyang Chang, Linguo Lu, Irfan Ullah, Wentao Hou, Jose Fernando Florez Gomez, Amanda Conde‐Delmoral, Clara M. Font Marin, Gerardo Morell, Zhongfang Chen, Xianyong Wu
{"title":"Copper Foil Substrate Enables Planar Indium Plating for Ultrahigh‐Efficiency and Long‐Lifespan Aqueous Trivalent Metal Batteries","authors":"Songyang Chang, Linguo Lu, Irfan Ullah, Wentao Hou, Jose Fernando Florez Gomez, Amanda Conde‐Delmoral, Clara M. Font Marin, Gerardo Morell, Zhongfang Chen, Xianyong Wu","doi":"10.1002/adfm.202407342","DOIUrl":null,"url":null,"abstract":"Aqueous trivalent metal batteries represent a compelling candidate for energy storage due to the intriguing three‐electron transfer reaction and the distinct properties of trivalent cations. However, little research progress has been achieved with trivalent batteries due to the inappropriate redox potentials and drastic ion hydrolysis side reactions. Herein, the appealing yet underrepresented trivalent indium is selected as an advanced metal choice and the crucial effect of substrate on its plating mechanism is revealed. When copper foil is used, an indiophilic indium‐copper alloy interface can be formed in situ upon plating, exhibiting favorable binding energies and low diffusion energy barriers for indium atoms. Consequently, a planar, smooth, and dense indium metal layer is uniformly deposited on the copper substrate, leading to outstanding plating efficiency (99.8–99.9%) and an exceedingly long lifespan (6.4–7.4 months). The plated indium anode is further paired with a high‐mass‐loading Prussian blue cathode (2 mAh cm<jats:sup>−2</jats:sup>), and the full cell (negative/positive electrode capacity, N/P = 2.5) delivers an excellent cycling life of 1000 cycles with 72% retention. This work represents a significant advancement in the development of high‐performance trivalent metal batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202407342","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous trivalent metal batteries represent a compelling candidate for energy storage due to the intriguing three‐electron transfer reaction and the distinct properties of trivalent cations. However, little research progress has been achieved with trivalent batteries due to the inappropriate redox potentials and drastic ion hydrolysis side reactions. Herein, the appealing yet underrepresented trivalent indium is selected as an advanced metal choice and the crucial effect of substrate on its plating mechanism is revealed. When copper foil is used, an indiophilic indium‐copper alloy interface can be formed in situ upon plating, exhibiting favorable binding energies and low diffusion energy barriers for indium atoms. Consequently, a planar, smooth, and dense indium metal layer is uniformly deposited on the copper substrate, leading to outstanding plating efficiency (99.8–99.9%) and an exceedingly long lifespan (6.4–7.4 months). The plated indium anode is further paired with a high‐mass‐loading Prussian blue cathode (2 mAh cm−2), and the full cell (negative/positive electrode capacity, N/P = 2.5) delivers an excellent cycling life of 1000 cycles with 72% retention. This work represents a significant advancement in the development of high‐performance trivalent metal batteries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜箔基底可实现平面镀铟,用于制造超高效、长寿命的三价金属水电池
由于三价阳离子具有引人入胜的三电子转移反应和独特的性质,三价金属水电池是一种引人注目的储能候选材料。然而,由于不适当的氧化还原电位和剧烈的离子水解副反应,三价电池的研究进展甚微。在此,我们选择了具有吸引力但代表性不足的三价铟作为先进金属,并揭示了基底对其电镀机制的关键影响。使用铜箔时,电镀后可在原位形成亲铟铟铜合金界面,铟原子的结合能有利,扩散能垒低。因此,在铜基板上能均匀沉积出平面、光滑和致密的铟金属层,从而获得出色的电镀效率(99.8%-99.9%)和超长的使用寿命(6.4-7.4 个月)。电镀铟阳极进一步与高载流子普鲁士蓝阴极(2 mAh cm-2)配对,整个电池(负极/正极容量,N/P = 2.5)的循环寿命达到 1000 次,保持率为 72%。这项研究成果标志着高性能三价金属电池的开发取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Remarkable Optoelectronic Characteristics of Synthesizable Square-Octagon Haeckelite Structures: Machine Learning Materials Discovery (Adv. Funct. Mater. 27/2024) Reverse-Current Tolerance for Hydrogen Evolution Reaction Activity of Lead-Decorated Nickel Catalysts in Zero-Gap Alkaline Water Electrolysis Systems (Adv. Funct. Mater. 27/2024) Electrically/Magnetically Dual-Driven Shape Memory Composites Fabricated by Multi-Material Magnetic Field-Assisted 4D Printing (Adv. Funct. Mater. 27/2024) Remarkably Boosting Piezocatalytic Performance of Sr0.5Ba0.5Nb2O6 Piezoceramics via Size Optimization and Oxygen Vacancy Engineering Ultralow‐Temperature (≤ −80 °C) Proton Pseudocapacitor with High Power‐Energy Density Enabled by Tailored Proton‐Rich Electrolyte and Electrode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1