Disentangling the chemistry and transport impacts of the Quasi-Biennial Oscillation on stratospheric ozone

IF 5.2 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Atmospheric Chemistry and Physics Pub Date : 2024-07-03 DOI:10.5194/egusphere-2024-1927
Jinbo Xie, Qi Tang, Michael Prather, Jadwiga Richter, Shixuan Zhang
{"title":"Disentangling the chemistry and transport impacts of the Quasi-Biennial Oscillation on stratospheric ozone","authors":"Jinbo Xie, Qi Tang, Michael Prather, Jadwiga Richter, Shixuan Zhang","doi":"10.5194/egusphere-2024-1927","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The quasi-biennial oscillation (QBO) in tropical winds perturbs stratospheric ozone throughout much of the atmosphere via changes in transport of ozone and other trace gases and via temperature changes that alter chemical processes. Here we separate the temperature-driven changes using the Department of Energy’s Energy Exascale Earth System Model version 2 (E3SMv2) with linearized stratospheric ozone chemistry. E3SM produces a natural QBO cycle in winds, temperature, and ozone. Our analysis defines climatological QBO patterns of ozone for the period 1979–2020 using both nonlinear principal component analysis and monthly composites centered on QBO phase shift. As a climate model, E3SM cannot predict the timing of the phase shift, but it does match these climatological patterns. We develop an offline version of our stratospheric chemistry module to calculate the steady-state response of ozone to temperature and overhead ozone perturbations, assuming that other chemical families involved in ozone chemistry remain fixed. We find a clear demarcation: ozone perturbations in the upper stratosphere (above 20-hPa) are predicted by the steady-state response of the ozone column to the temperature changes; while those in the lower stratosphere show no temperature response and are presumably driven by circulation changes. These results are important for diagnosing model-model differences in the QBO-ozone responses for climate projections.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1927","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. The quasi-biennial oscillation (QBO) in tropical winds perturbs stratospheric ozone throughout much of the atmosphere via changes in transport of ozone and other trace gases and via temperature changes that alter chemical processes. Here we separate the temperature-driven changes using the Department of Energy’s Energy Exascale Earth System Model version 2 (E3SMv2) with linearized stratospheric ozone chemistry. E3SM produces a natural QBO cycle in winds, temperature, and ozone. Our analysis defines climatological QBO patterns of ozone for the period 1979–2020 using both nonlinear principal component analysis and monthly composites centered on QBO phase shift. As a climate model, E3SM cannot predict the timing of the phase shift, but it does match these climatological patterns. We develop an offline version of our stratospheric chemistry module to calculate the steady-state response of ozone to temperature and overhead ozone perturbations, assuming that other chemical families involved in ozone chemistry remain fixed. We find a clear demarcation: ozone perturbations in the upper stratosphere (above 20-hPa) are predicted by the steady-state response of the ozone column to the temperature changes; while those in the lower stratosphere show no temperature response and are presumably driven by circulation changes. These results are important for diagnosing model-model differences in the QBO-ozone responses for climate projections.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
厘清准两年涛动对平流层臭氧的化学和迁移影响
摘要热带风中的准双年振荡(QBO)通过臭氧和其他痕量气体迁移的变化以及改变化学过程的温度变化对大气大部分区域的平流层臭氧产生扰动。在这里,我们利用能源部的能源超大规模地球系统模型 2(E3SMv2)和线性化平流层臭氧化学过程,分离了温度驱动的变化。E3SM 会产生风、温度和臭氧的自然 QBO 循环。我们的分析利用非线性主成分分析和以 QBO 相移为中心的月度复合分析,确定了 1979-2020 年期间臭氧的气候 QBO 模式。作为一种气候模式,ESM 无法预测相位移动的时间,但它确实与这些气候模式相吻合。我们开发了一个离线版本的平流层化学模块,以计算臭氧对温度和上空臭氧扰动的稳态响应,同时假设参与臭氧化学反应的其他化学族保持不变。我们发现了一个明显的分界线:平流层上部(20-hPa 以上)的臭氧扰动是由臭氧柱对温度变化的稳态响应预测的;而平流层下部的臭氧扰动则没有温度响应,可能是由环流变化驱动的。这些结果对于诊断气候预测中 QBO-臭氧响应的模式-模式差异非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Chemistry and Physics
Atmospheric Chemistry and Physics 地学-气象与大气科学
CiteScore
10.70
自引率
20.60%
发文量
702
审稿时长
6 months
期刊介绍: Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere. The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.
期刊最新文献
Does the Asian summer monsoon play a role in the stratospheric aerosol budget of the Arctic? Disentangling the chemistry and transport impacts of the Quasi-Biennial Oscillation on stratospheric ozone Monitoring European anthropogenic NOx emissions from space The influence of extratropical cross-tropopause mixing on the correlation between ozone and sulfate aerosol in the lowermost stratosphere The optical properties of stratospheric aerosol layer perturbation of the Hunga volcano eruption of January 15th, 2022
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1