Efficient In Situ Doping of Strained Germanium Tin Epilayers at Unusually Low Temperature

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-07-02 DOI:10.1002/aelm.202300811
Maksym Myronov, Pedram Jahandar, Simone Rossi, Kevin Sewell, Felipe Murphy‐Armando, Fabio Pezzoli
{"title":"Efficient In Situ Doping of Strained Germanium Tin Epilayers at Unusually Low Temperature","authors":"Maksym Myronov, Pedram Jahandar, Simone Rossi, Kevin Sewell, Felipe Murphy‐Armando, Fabio Pezzoli","doi":"10.1002/aelm.202300811","DOIUrl":null,"url":null,"abstract":"Efficient p‐ and n‐type in situ doping of compressively strained germanium tin (Ge<jats:sub>1‐x</jats:sub>Sn<jats:sub>x</jats:sub>) semiconductor epilayers, grown by chemical vapor deposition on a standard Si(001) substrate, is demonstrated. Materials characterization results reveal unusual impact of dopants manifesting via a pronounced reduction of Sn content in the epilayer, accompanied by an enhancement of the growth rate, due to increasing p‐type doping concentration. Furthermore, the opposite behavior for n‐type doping is observed, resulting in a less pronounced increase of Sn concentration and no effect on growth rate. Nevertheless, a very high density of electrically active holes up to ≈4 × 10<jats:sup>20</jats:sup> cm<jats:sup>−3</jats:sup> is obtained in p‐type doped Ge<jats:sub>1‐x</jats:sub>Sn<jats:sub>x</jats:sub> epilayer resulting in the lowest resistivity of 0.15 mΩ cm among all in situ doped epitaxial and strained group‐IV semiconductors. Also, the metal‐to‐insulator transition in Ge<jats:sub>1‐x</jats:sub>Sn<jats:sub>x</jats:sub> is experimentally demonstrated for doping levels above 1 × 10<jats:sup>17</jats:sup> cm<jats:sup>−3</jats:sup>, which is substantially lower than in any group‐IV semiconductor, and theoretically predict it to be as low as ≈1 × 10<jats:sup>17</jats:sup> cm<jats:sup>−3</jats:sup>. The findings enabled by the doping regime explored in this work can open novel prospects to engineer low resistivity contacts and charge current injection in applications covering next‐generation transistors, qubits, diodes, electrically driven light sources, sensors and hybrid quantum devices.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202300811","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient p‐ and n‐type in situ doping of compressively strained germanium tin (Ge1‐xSnx) semiconductor epilayers, grown by chemical vapor deposition on a standard Si(001) substrate, is demonstrated. Materials characterization results reveal unusual impact of dopants manifesting via a pronounced reduction of Sn content in the epilayer, accompanied by an enhancement of the growth rate, due to increasing p‐type doping concentration. Furthermore, the opposite behavior for n‐type doping is observed, resulting in a less pronounced increase of Sn concentration and no effect on growth rate. Nevertheless, a very high density of electrically active holes up to ≈4 × 1020 cm−3 is obtained in p‐type doped Ge1‐xSnx epilayer resulting in the lowest resistivity of 0.15 mΩ cm among all in situ doped epitaxial and strained group‐IV semiconductors. Also, the metal‐to‐insulator transition in Ge1‐xSnx is experimentally demonstrated for doping levels above 1 × 1017 cm−3, which is substantially lower than in any group‐IV semiconductor, and theoretically predict it to be as low as ≈1 × 1017 cm−3. The findings enabled by the doping regime explored in this work can open novel prospects to engineer low resistivity contacts and charge current injection in applications covering next‐generation transistors, qubits, diodes, electrically driven light sources, sensors and hybrid quantum devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在异常低温条件下高效原位掺杂应变锗锡外延层
通过化学气相沉积法在标准硅(001)衬底上生长出的压缩应变锗锡(Ge1-xSnx)半导体外延层中进行了高效的 p 型和 n 型原位掺杂。材料表征结果揭示了掺杂剂的不寻常影响,表现为随着 p 型掺杂浓度的增加,外延层中 Sn 的含量明显降低,同时生长速度加快。此外,对于 n 型掺杂物,观察到了相反的行为,即 Sn 浓度增加不明显,但对生长速度没有影响。然而,在掺杂 p 型的 Ge1-xSnx 外延层中,电活性空穴的密度非常高,可达 ≈4 × 1020 cm-3,因此在所有原位掺杂的外延和应变 IV 族半导体中,电阻率最低,仅为 0.15 mΩ cm。此外,实验证明,Ge1-xSnx 中的金属-绝缘体转变掺杂水平高于 1 × 1017 cm-3,大大低于任何 IV 族半导体,理论预测其掺杂水平可低至≈1 × 1017 cm-3。这项工作中探索的掺杂机制所带来的发现,为在下一代晶体管、量子比特、二极管、电驱动光源、传感器和混合量子器件等应用中设计低电阻率接触和电荷电流注入开辟了新的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Infrared Photodetector Based on van der Waals MoS2/MoTe2 Hetero-Bilayer Modulated by Photogating Layer Exchange Synthesis of SiGe for Flexible Thermoelectric Generators: A Comprehensive Review (Adv. Electron. Mater. 7/2024) Volatile and Nonvolatile Dual-Mode Switching Operations in an Ag-Ag2S Core-Shell Nanoparticle Atomic Switch Network Liquid-Solid Combination Memristors with Switchable Resistance Stretching, Tapping, or Compressing–What Role Does Triboelectricity Play in the Signal Output from Piezoelectric Nanogenerators?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1