{"title":"Establishment of a promising vitiligo mouse model for pathogenesis and treatment studies.","authors":"Ruirui Fan, Jie Gao","doi":"10.1186/s13000-024-01520-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Vitiligo is a chronic dermatological condition characterized by the progressive loss of melanocytes, for which traditional therapy has shown limited efficacy. This study aimed to establish a vitiligo model with easy operability, high repeatability, and stable depigmentation to provide a foundation for studying the pathogenesis and developing novel therapies for vitiligo.</p><p><strong>Methods: </strong>(1) Establishing vitiligo model: Firstly, deliver B16F10 cells to the back skin of C57BL/6 J via intradermal injection (day 0), and the CD4 depletion antibody was injected intraperitoneally on day 4 and 10. Secondly, the melanoma was surgically removed on day 12. Thirdly, CD8 antibody was administered intraperitoneally every fourth day till day 30. (2) Identification of vitiligo model: H&E staining, immunohistochemistry, and immunofluorescence were used to detect the melanocytes. The melanin was detected by transmission electron microscopy (TEM), Lillie ferrous sulfate staining and L-DOPA staining.</p><p><strong>Results: </strong>(1) The back skin and hair began to appear white on day 30. Melanin loss reached peak on day 60; (2) Hematoxylin and eosin (H&E) staining, immunohistochemistry and immunofluorescence results showed melanocytes were reduced. L-DOPA staining, Lillie ferrous sulfate staining and TEM results showed that melanin decreased in the epidermis.</p><p><strong>Conclusion: </strong>We successfully establishment a vitiligo mouse model which can be more capable to simulate the pathogenesis of human vitiligo and provide an important basis for the study of pathogenesis and therapy of vitiligo.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223374/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13000-024-01520-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Vitiligo is a chronic dermatological condition characterized by the progressive loss of melanocytes, for which traditional therapy has shown limited efficacy. This study aimed to establish a vitiligo model with easy operability, high repeatability, and stable depigmentation to provide a foundation for studying the pathogenesis and developing novel therapies for vitiligo.
Methods: (1) Establishing vitiligo model: Firstly, deliver B16F10 cells to the back skin of C57BL/6 J via intradermal injection (day 0), and the CD4 depletion antibody was injected intraperitoneally on day 4 and 10. Secondly, the melanoma was surgically removed on day 12. Thirdly, CD8 antibody was administered intraperitoneally every fourth day till day 30. (2) Identification of vitiligo model: H&E staining, immunohistochemistry, and immunofluorescence were used to detect the melanocytes. The melanin was detected by transmission electron microscopy (TEM), Lillie ferrous sulfate staining and L-DOPA staining.
Results: (1) The back skin and hair began to appear white on day 30. Melanin loss reached peak on day 60; (2) Hematoxylin and eosin (H&E) staining, immunohistochemistry and immunofluorescence results showed melanocytes were reduced. L-DOPA staining, Lillie ferrous sulfate staining and TEM results showed that melanin decreased in the epidermis.
Conclusion: We successfully establishment a vitiligo mouse model which can be more capable to simulate the pathogenesis of human vitiligo and provide an important basis for the study of pathogenesis and therapy of vitiligo.