Local nano-electrode fabrication utilizing nanofluidic and nano-electrochemical control.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-07-04 DOI:10.1002/elps.202300002
Kyojiro Morikawa, Tomoaki Takeuchi, Takehiko Kitamori
{"title":"Local nano-electrode fabrication utilizing nanofluidic and nano-electrochemical control.","authors":"Kyojiro Morikawa, Tomoaki Takeuchi, Takehiko Kitamori","doi":"10.1002/elps.202300002","DOIUrl":null,"url":null,"abstract":"<p><p>Miniaturized systems have attracted much attention with the recent advances in microfluidics and nanofluidics. From the capillary electrophoresis, the development of glass-based microfluidic and nanofluidic technologies has supported advances in microfluidics and nanofluidics. Most microfluidic systems, especially nanofluidic systems, are still simple, such as systems constructed with simple straight nanochannels and bulk-scale electrodes. One of the bottlenecks to the development of more complicated and sophisticated systems is to develop the locally integrated nano-electrodes. However, there are still issues with integrating nano-electrodes into nanofluidic devices because it is difficult to fit the nano-electrode size into a nanofluidic channel at the nanometer level. In this study, we propose a new method for the fabrication of local nano-electrodes in nanofluidic devices with nanofluidic and nano-electrochemistry-based experiments. An electroplating solution was introduced to a nanochannel with control of the flow and the electroplating reaction, by which nano-electrodes were successfully fabricated. In addition, a nanofluidic device was available for nanofluidic experiments with the application of 200 kPa. This method can be applied to any electroplating material such as gold and copper. The local nano-electrode will make a significant contribution to the development of more complicated and sophisticated nanofluidic electrophoresis systems and to local electric detection methods for various nanofluidic devices.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.202300002","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Miniaturized systems have attracted much attention with the recent advances in microfluidics and nanofluidics. From the capillary electrophoresis, the development of glass-based microfluidic and nanofluidic technologies has supported advances in microfluidics and nanofluidics. Most microfluidic systems, especially nanofluidic systems, are still simple, such as systems constructed with simple straight nanochannels and bulk-scale electrodes. One of the bottlenecks to the development of more complicated and sophisticated systems is to develop the locally integrated nano-electrodes. However, there are still issues with integrating nano-electrodes into nanofluidic devices because it is difficult to fit the nano-electrode size into a nanofluidic channel at the nanometer level. In this study, we propose a new method for the fabrication of local nano-electrodes in nanofluidic devices with nanofluidic and nano-electrochemistry-based experiments. An electroplating solution was introduced to a nanochannel with control of the flow and the electroplating reaction, by which nano-electrodes were successfully fabricated. In addition, a nanofluidic device was available for nanofluidic experiments with the application of 200 kPa. This method can be applied to any electroplating material such as gold and copper. The local nano-electrode will make a significant contribution to the development of more complicated and sophisticated nanofluidic electrophoresis systems and to local electric detection methods for various nanofluidic devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用纳米流体和纳米电化学控制制造局部纳米电极。
随着近年来微流控和纳米流控技术的发展,微型系统备受关注。从毛细管电泳开始,玻璃基微流体和纳米流体技术的发展支持了微流体和纳米流体技术的进步。大多数微流控系统,尤其是纳米流控系统,仍然比较简单,例如用简单的直纳米通道和散装电极构建的系统。开发更复杂、更精密系统的瓶颈之一是开发局部集成的纳米电极。然而,将纳米电极集成到纳米流体设备中仍存在一些问题,因为很难将纳米电极尺寸与纳米级别的纳米流体通道相匹配。在这项研究中,我们提出了一种在纳米流体设备中制造局部纳米电极的新方法,并进行了基于纳米流体和纳米电化学的实验。通过控制流动和电镀反应,将电镀溶液引入纳米通道,成功制备出纳米电极。此外,还提供了一个纳米流体装置,可在 200 kPa 的压力下进行纳米流体实验。这种方法适用于任何电镀材料,如金和铜。该局部纳米电极将为开发更复杂、更精密的纳米流体电泳系统以及各种纳米流体装置的局部电检测方法做出重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1