Functional consequences of changes in the distribution of Ca2+ extrusion pathways between t-tubular and surface membranes in a model of human ventricular cardiomyocyte
Michal Pásek , Markéta Bébarová , Milena Šimurdová , Jiří Šimurda
{"title":"Functional consequences of changes in the distribution of Ca2+ extrusion pathways between t-tubular and surface membranes in a model of human ventricular cardiomyocyte","authors":"Michal Pásek , Markéta Bébarová , Milena Šimurdová , Jiří Šimurda","doi":"10.1016/j.yjmcc.2024.06.010","DOIUrl":null,"url":null,"abstract":"<div><p>The sarcolemmal Ca<sup>2+</sup> efflux pathways, Na<sup>+</sup>-Ca<sup>2+</sup>-exchanger (NCX) and Ca<sup>2+</sup>-ATPase (PMCA), play a crucial role in the regulation of intracellular Ca<sup>2+</sup> load and Ca<sup>2+</sup> transient in cardiomyocytes. The distribution of these pathways between the t-tubular and surface membrane of ventricular cardiomyocytes varies between species and is not clear in human. Moreover, several studies suggest that this distribution changes during the development and heart diseases. However, the consequences of NCX and PMCA redistribution in human ventricular cardiomyocytes have not yet been elucidated. In this study, we aimed to address this point by using a mathematical model of the human ventricular myocyte incorporating t-tubules, dyadic spaces, and subsarcolemmal spaces. Effects of various combinations of t-tubular fractions of NCX and PMCA were explored, using values between 0.2 and 1 as reported in animal experiments under normal and pathological conditions. Small variations in the action potential duration (≤ 2%), but significant changes in the peak value of cytosolic Ca<sup>2+</sup> transient (up to 17%) were observed at stimulation frequencies corresponding to the human heart rate at rest and during activity. The analysis of model results revealed that the changes in Ca<sup>2+</sup> transient induced by redistribution of NCX and PMCA were mainly caused by alterations in Ca<sup>2+</sup> concentrations in the subsarcolemmal spaces and cytosol during the diastolic phase of the stimulation cycle. The results suggest that redistribution of both transporters between the t-tubular and surface membranes contributes to changes in contractility in human ventricular cardiomyocytes during their development and heart disease and may promote arrhythmogenesis.</p></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"193 ","pages":"Pages 113-124"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002228282400107X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The sarcolemmal Ca2+ efflux pathways, Na+-Ca2+-exchanger (NCX) and Ca2+-ATPase (PMCA), play a crucial role in the regulation of intracellular Ca2+ load and Ca2+ transient in cardiomyocytes. The distribution of these pathways between the t-tubular and surface membrane of ventricular cardiomyocytes varies between species and is not clear in human. Moreover, several studies suggest that this distribution changes during the development and heart diseases. However, the consequences of NCX and PMCA redistribution in human ventricular cardiomyocytes have not yet been elucidated. In this study, we aimed to address this point by using a mathematical model of the human ventricular myocyte incorporating t-tubules, dyadic spaces, and subsarcolemmal spaces. Effects of various combinations of t-tubular fractions of NCX and PMCA were explored, using values between 0.2 and 1 as reported in animal experiments under normal and pathological conditions. Small variations in the action potential duration (≤ 2%), but significant changes in the peak value of cytosolic Ca2+ transient (up to 17%) were observed at stimulation frequencies corresponding to the human heart rate at rest and during activity. The analysis of model results revealed that the changes in Ca2+ transient induced by redistribution of NCX and PMCA were mainly caused by alterations in Ca2+ concentrations in the subsarcolemmal spaces and cytosol during the diastolic phase of the stimulation cycle. The results suggest that redistribution of both transporters between the t-tubular and surface membranes contributes to changes in contractility in human ventricular cardiomyocytes during their development and heart disease and may promote arrhythmogenesis.
期刊介绍:
The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.