Measuring cardiomyocyte nuclear ploidy is crucial for evaluating broader aspects of cardiac development, function, and disease progression. Fluorescence in situ hybridization (FISH) remains the gold standard for ploidy identification; however, its application in cardiomyocytes is hindered by their unique cellular complexities. Here, we describe a detailed cardiomyocyte-specific FISH (cardioFISH) protocol. CardioFISH incorporates a tailored enzymatic digestion strategy to enhances nuclear accessibility while preserving cellular integrity and minimizing sarcomere-derived autofluorescence. Additionally, we introduce a 3D nuclear visualization framework for comprehensive cardioFISH signal analysis, addressing the limitations imposed by the large nuclear dimensions of cardiomyocytes, where signals are frequently distributed across multiple imaging planes. This two-day cardioFISH protocol is applicable to various stages of cardiomyocyte development and provides a powerful tool for advancing studies of cardiomyocyte ploidy.
Overconsumption of fructose has been linked to the development of systemic metabolic and cardiac diseases, yet few studies have focused on the link between cardiac fructose metabolism and the development of heart disease. Low-oxygen complex exercise is considered an effective means of treating and preventing metabolic diseases and improving cardiac function, however, it is unclear, the link between low-oxygen complex exercise and high-fructose-induced heart disease. Therefore, the aim of this study was to investigate the effect of hypoxic complex exercise on heart disease on a high fructose diet. The results of the study found that hypoxic compound exercise improved the upregulation of inflammatory factor Upd3 and systemic fat accumulation in the heart induced by high fructose diet by inhibiting the expression of KHK gene in the heart; and it improved the impaired cardiac rhythmic function and pumping function, improved the disorder of myofilament fiber arrangement, reduced the level of cardiac oxidative stress, and reduced cardiac collagen deposition. In addition, cardiac KHK-specific knockdown had the same effect on high fructose diet hearts. Compared with single KHK cardiac-specific knockdown or hypoxic combination exercise, hypoxic combination exercise combined with KHK cardiac-specific knockdown was superior in improving the high-fructose diet-induced increase in arrhythmia index, systolic and diastolic dysfunction, and decrease in fractional shortening. Therefore, we conclude that hypoxic complex exercise improved high-fructose diet-induced cardiac rhythmic function and pumping dysfunction by reducing KHK expression.
Background: Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening cardiovascular event characterized by high mortality rates. Previous studies have shown that matrix metalloproteinases 19 (MMP19) was involved in TAAD formation, while the detailed role of MMP19 in TAAD pathogenesis and underlying mechanism remain unclear.
Methods: To investigate the role of MMP19 in the progression of TAAD, we generated global Mmp19 knockout mice, as well as VSMCs (vascular smooth muscle cells)-specific Mmp19 knockdown mice, and established a BAPN-induced TAAD model. To elucidate the signaling pathways modulated by Aggrecan, we employed an adeno-associated virus serotype 9 (AAV9) vector encoding Acan short hairpin RNA (shRNA) for VSMC-specific knockdown of Acan. Ultimately, we injected an AAV vector encoding VSMC-specific Mmp19 into BAPN-induced TAAD mice to assess whether MMP19 can mitigate the development of TAAD.
Results: Our findings revealed elevated mRNA and protein levels of MMP19 in the aortas of both TAAD mice and patients. The systemic ablation of Mmp19, as well as VSMC-specific Mmp19 knockdown, significantly exacerbated BAPN-induced progressive TAAD, and TAAD-related cardiovascular remodeling. Mmp19 deficiency resulted in the accumulation of Acan, but not Vcan, within the aorta, driving the phenotypic switch of VSMCs from contractile to synthetic state through activting Wnt/β-catenin signaling pathway. The selective inhibitor of Wnt/β-catenin signaling, MASB, was effective in reversing the dedifferentiation of VSMCs induced by aggrecan accumulation. Notably, the specific knockdown of Acan in VSMCs restored the contractile phenotype of VSMCs and inhibited Wnt/β-catenin signaling, thereby alleviating BAPN-induced TAAD in Mmp19-/- mice. Additionally, VSMC-specific complementation of MMP19 also alleviated the progressive TAAD phenotype in Mmp19-/- mice.
Conclusions: The study underscores that MMP19 deficiency exacerbates TAAD by promoting Acan aggregation and destroying the homeostasis of VSMCs by activating Wnt/β-catenin signaling pathway. These results posit MMP19 as a promising novel therapeutic target for TAAD intervention.