{"title":"3D printable elastomers with exceptional strength and toughness","authors":"Zizheng Fang, Hongfeng Mu, Zhuo Sun, Kaihang Zhang, Anyang Zhang, Jiada Chen, Ning Zheng, Qian Zhao, Xuxu Yang, Feng Liu, Jingjun Wu, Tao Xie","doi":"10.1038/s41586-024-07588-6","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3D) printing has emerged as an attractive manufacturing technique because of its exceptional freedom in accessing geometrically complex customizable products. Its potential for mass manufacturing, however, is hampered by its low manufacturing efficiency (print speed) and insufficient product quality (mechanical properties). Recent progresses in ultra-fast 3D printing of photo-polymers1–5 have alleviated the issue of manufacturing efficiency, but the mechanical performance of typical printed polymers still falls far behind what is achievable with conventional processing techniques. This is because of the printing requirements that restrict the molecular design towards achieving high mechanical performance. Here we report a 3D photo-printable resin chemistry that yields an elastomer with tensile strength of 94.6 MPa and toughness of 310.4 MJ m−3, both of which far exceed that of any 3D printed elastomer6–10. Mechanistically, this is achieved by the dynamic covalent bonds in the printed polymer that allow network topological reconfiguration. This facilitates the formation of hierarchical hydrogen bonds (in particular, amide hydrogen bonds), micro-phase separation and interpenetration architecture, which contribute synergistically to superior mechanical performance. Our work suggests a brighter future for mass manufacturing using 3D printing. Three-dimensional photo-printable resin chemistry yields an elastomer with tensile strength of 94.6 MPa and toughness of 310.4 MJ m−3, both of which far exceed that of any three-dimensional printed elastomer.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"631 8022","pages":"783-788"},"PeriodicalIF":50.5000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-07588-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional (3D) printing has emerged as an attractive manufacturing technique because of its exceptional freedom in accessing geometrically complex customizable products. Its potential for mass manufacturing, however, is hampered by its low manufacturing efficiency (print speed) and insufficient product quality (mechanical properties). Recent progresses in ultra-fast 3D printing of photo-polymers1–5 have alleviated the issue of manufacturing efficiency, but the mechanical performance of typical printed polymers still falls far behind what is achievable with conventional processing techniques. This is because of the printing requirements that restrict the molecular design towards achieving high mechanical performance. Here we report a 3D photo-printable resin chemistry that yields an elastomer with tensile strength of 94.6 MPa and toughness of 310.4 MJ m−3, both of which far exceed that of any 3D printed elastomer6–10. Mechanistically, this is achieved by the dynamic covalent bonds in the printed polymer that allow network topological reconfiguration. This facilitates the formation of hierarchical hydrogen bonds (in particular, amide hydrogen bonds), micro-phase separation and interpenetration architecture, which contribute synergistically to superior mechanical performance. Our work suggests a brighter future for mass manufacturing using 3D printing. Three-dimensional photo-printable resin chemistry yields an elastomer with tensile strength of 94.6 MPa and toughness of 310.4 MJ m−3, both of which far exceed that of any three-dimensional printed elastomer.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.