Interpreting the role of antioxidants in vivo: A cautionary tale.

IF 2.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Microbiology Pub Date : 2024-07-01 Epub Date: 2024-07-03 DOI:10.1111/mmi.15292
Diana M Downs, Robert K Poole
{"title":"Interpreting the role of antioxidants in vivo: A cautionary tale.","authors":"Diana M Downs, Robert K Poole","doi":"10.1111/mmi.15292","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria have a remarkable ability to sense environmental stresses and to respond to these stressors by adapting their metabolism and physiology. In recent publications, investigators have suggested that multiple stresses that cause cell death share the mechanistic feature of stimulating the formation of reactive oxygen species (ROS). A central piece of evidence cited in these claims is the ability of exogenous antioxidant compounds to mitigate stress-related cell death. The validity of attributing a positive effect of exogenous antioxidants to ROS-mediated stress is challenged by an important study by Korshunov and Imlay in this issue of Molecular Microbiology. This study reports biochemical data that convincingly show that some commonly used antioxidants quench oxidants orders of magnitude too slowly to have a significant effect on the concentration of ROS in the cell. Under conditions where antioxidants minimize cell death, they also slow growth. Significantly, slowing cell growth by other means has the same restorative effect as adding an antioxidant. Based on the solid biochemical and genetic data, Korshunov and Imlay make the case for discarding the use of antioxidants to diagnose conditions that generate increased internal ROS production.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"129-132"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260230/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15292","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacteria have a remarkable ability to sense environmental stresses and to respond to these stressors by adapting their metabolism and physiology. In recent publications, investigators have suggested that multiple stresses that cause cell death share the mechanistic feature of stimulating the formation of reactive oxygen species (ROS). A central piece of evidence cited in these claims is the ability of exogenous antioxidant compounds to mitigate stress-related cell death. The validity of attributing a positive effect of exogenous antioxidants to ROS-mediated stress is challenged by an important study by Korshunov and Imlay in this issue of Molecular Microbiology. This study reports biochemical data that convincingly show that some commonly used antioxidants quench oxidants orders of magnitude too slowly to have a significant effect on the concentration of ROS in the cell. Under conditions where antioxidants minimize cell death, they also slow growth. Significantly, slowing cell growth by other means has the same restorative effect as adding an antioxidant. Based on the solid biochemical and genetic data, Korshunov and Imlay make the case for discarding the use of antioxidants to diagnose conditions that generate increased internal ROS production.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解读抗氧化剂在体内的作用:一个值得警惕的故事。
细菌具有感知环境压力并通过调整新陈代谢和生理机能来应对这些压力的非凡能力。在最近发表的文章中,研究人员提出,导致细胞死亡的多种压力都具有刺激活性氧(ROS)形成的机理特征。这些说法引用的一个核心证据是外源抗氧化剂化合物能够减轻与压力相关的细胞死亡。Korshunov 和 Imlay 在本期《分子微生物学》(Molecular Microbiology)杂志上发表的一项重要研究对将外源性抗氧化剂的积极作用归因于 ROS 介导的应激反应的正确性提出了质疑。这项研究报告的生化数据令人信服地表明,一些常用的抗氧化剂淬灭氧化剂的速度要慢得多,无法对细胞中的 ROS 浓度产生显著影响。在抗氧化剂能最大限度地减少细胞死亡的条件下,它们也能减缓细胞的生长。值得注意的是,通过其他方式减缓细胞生长与添加抗氧化剂具有相同的恢复效果。根据可靠的生化和遗传数据,科尔舒诺夫和伊姆雷提出了放弃使用抗氧化剂来诊断内部 ROS 生成增加的情况的理由。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Microbiology
Molecular Microbiology 生物-生化与分子生物学
CiteScore
7.20
自引率
5.60%
发文量
132
审稿时长
1.7 months
期刊介绍: Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses. Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.
期刊最新文献
Comparative Multi-Omics Survey Reveals Novel Specialized Metabolites and Biosynthetic Gene Clusters Under GacS Control in Pseudomonas donghuensis Strain SVBP6 Bacterial Organelles in Iron Physiology Converging Roles of the Metal Transporter SMF11 and the Ferric Reductase FRE1 in Iron Homeostasis of Candida albicans Leptospira Leptolysin Contributes to Serum Resistance but Is Not Essential for Acute Infection. Capsular Polysaccharide Production in Bacteria of the Mycoplasma Genus: A Huge Diversity of Pathways and Synthases for So-Called Minimal Bacteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1