Structure, Dynamics and Functional Implications of the Eukaryotic Vault Complex.

Q1 Biochemistry, Genetics and Molecular Biology Sub-cellular biochemistry Pub Date : 2024-01-01 DOI:10.1007/978-3-031-58843-3_20
María González-Álamos, Pablo Guerra, Núria Verdaguer
{"title":"Structure, Dynamics and Functional Implications of the Eukaryotic Vault Complex.","authors":"María González-Álamos, Pablo Guerra, Núria Verdaguer","doi":"10.1007/978-3-031-58843-3_20","DOIUrl":null,"url":null,"abstract":"<p><p>Vault ribonucleoprotein particles are naturally designed nanocages, widely found in the eukaryotic kingdom. Vaults consist of 78 copies of the major vault protein (MVP) that are organized in 2 symmetrical cup-shaped halves, of an approximate size of 70x40x40 nm, leaving a huge internal cavity which accommodates the vault poly(ADP-ribose) polymerase (vPARP), the telomerase-associated protein-1 (TEP1) and some small untranslated RNAs. Diverse hypotheses have been developed on possible functions of vaults, based on their unique capsular structure, their rapid movements and the distinct subcellular localization of the particles, implicating transport of cargo, but they are all pending confirmation. Vault particles also possess many attributes that can be exploited in nanobiotechnology, particularly in the creation of vehicles for the delivery of multiple molecular cargoes. Here we review what is known about the structure and dynamics of the vault complex and discuss a possible mechanism for the vault opening process. The recent findings in the characterization of the vaults in cells and in its natural microenvironment will be also discussed.</p>","PeriodicalId":21991,"journal":{"name":"Sub-cellular biochemistry","volume":"104 ","pages":"531-548"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sub-cellular biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-58843-3_20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Vault ribonucleoprotein particles are naturally designed nanocages, widely found in the eukaryotic kingdom. Vaults consist of 78 copies of the major vault protein (MVP) that are organized in 2 symmetrical cup-shaped halves, of an approximate size of 70x40x40 nm, leaving a huge internal cavity which accommodates the vault poly(ADP-ribose) polymerase (vPARP), the telomerase-associated protein-1 (TEP1) and some small untranslated RNAs. Diverse hypotheses have been developed on possible functions of vaults, based on their unique capsular structure, their rapid movements and the distinct subcellular localization of the particles, implicating transport of cargo, but they are all pending confirmation. Vault particles also possess many attributes that can be exploited in nanobiotechnology, particularly in the creation of vehicles for the delivery of multiple molecular cargoes. Here we review what is known about the structure and dynamics of the vault complex and discuss a possible mechanism for the vault opening process. The recent findings in the characterization of the vaults in cells and in its natural microenvironment will be also discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
真核生物拱顶复合体的结构、动力学和功能影响。
拱顶核糖核蛋白颗粒是一种天然设计的纳米笼子,广泛存在于真核生物界。穹隆由 78 个拷贝的主要穹隆蛋白(MVP)组成,呈对称的两半杯状,大小约为 70x40x40 纳米,内部留有一个巨大的空腔,可容纳穹隆聚(ADP-核糖)聚合酶(vPARP)、端粒酶相关蛋白-1(TEP1)和一些小型非翻译 RNA。根据拱顶体独特的囊状结构、其快速移动和独特的亚细胞定位,人们对拱顶体可能具有的功能提出了各种假设,但这些假设都有待证实。穹隆颗粒还具有许多可用于纳米生物技术的特性,特别是在创造用于运送多种分子货物的载体方面。在此,我们回顾了目前已知的拱顶复合体的结构和动力学,并讨论了拱顶打开过程的可能机制。此外,我们还将讨论在细胞及其自然微环境中对拱顶进行表征的最新发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sub-cellular biochemistry
Sub-cellular biochemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.90
自引率
0.00%
发文量
33
期刊介绍: The book series SUBCELLULAR BIOCHEMISTRY is a renowned and well recognized forum for disseminating advances of emerging topics in Cell Biology and related subjects. All volumes are edited by established scientists and the individual chapters are written by experts on the relevant topic. The individual chapters of each volume are fully citable and indexed in Medline/Pubmed to ensure maximum visibility of the work.
期刊最新文献
Basic Epigenetic Mechanisms. Environmental Enrichment and Epigenetic Changes in the Brain: From the Outside to the Deep Inside. Epigenetic Control in Schizophrenia. Epigenetics in Learning and Memory. Epigenetics in Neurodegenerative Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1