Structures and Efflux Mechanisms of the AcrAB-TolC Pump.

Q1 Biochemistry, Genetics and Molecular Biology Sub-cellular biochemistry Pub Date : 2024-01-01 DOI:10.1007/978-3-031-58843-3_1
Zhili Yu, Xiaodong Shi, Zhao Wang
{"title":"Structures and Efflux Mechanisms of the AcrAB-TolC Pump.","authors":"Zhili Yu, Xiaodong Shi, Zhao Wang","doi":"10.1007/978-3-031-58843-3_1","DOIUrl":null,"url":null,"abstract":"<p><p>The global emergence of multidrug resistance (MDR) in gram-negative bacteria has become a matter of worldwide concern. MDR in these pathogens is closely linked to the overexpression of certain efflux pumps, particularly the resistance-nodulation-cell division (RND) efflux pumps. Inhibition of these pumps presents an attractive and promising strategy to combat antibiotic resistance, as the efflux pump inhibitors can effectively restore the potency of existing antibiotics. AcrAB-TolC is one well-studied RND efflux pump, which transports a variety of substrates, therefore providing resistance to a broad spectrum of antibiotics. To develop effective pump inhibitors, a comprehensive understanding of the structural aspect of the AcrAB-TolC efflux pump is imperative. Previous studies on this pump's structure have been limited to individual components or in vitro determination of fully assembled pumps. Recent advancements in cellular cryo-electron tomography (cryo-ET) have provided novel insights into this pump's assembly and functional mechanism within its native cell membrane environment. Here, we present a summary of the structural data regarding the AcrAB-TolC efflux pump, shedding light on its assembly pathway and operational mechanism.</p>","PeriodicalId":21991,"journal":{"name":"Sub-cellular biochemistry","volume":"104 ","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sub-cellular biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-58843-3_1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The global emergence of multidrug resistance (MDR) in gram-negative bacteria has become a matter of worldwide concern. MDR in these pathogens is closely linked to the overexpression of certain efflux pumps, particularly the resistance-nodulation-cell division (RND) efflux pumps. Inhibition of these pumps presents an attractive and promising strategy to combat antibiotic resistance, as the efflux pump inhibitors can effectively restore the potency of existing antibiotics. AcrAB-TolC is one well-studied RND efflux pump, which transports a variety of substrates, therefore providing resistance to a broad spectrum of antibiotics. To develop effective pump inhibitors, a comprehensive understanding of the structural aspect of the AcrAB-TolC efflux pump is imperative. Previous studies on this pump's structure have been limited to individual components or in vitro determination of fully assembled pumps. Recent advancements in cellular cryo-electron tomography (cryo-ET) have provided novel insights into this pump's assembly and functional mechanism within its native cell membrane environment. Here, we present a summary of the structural data regarding the AcrAB-TolC efflux pump, shedding light on its assembly pathway and operational mechanism.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AcrAB-TolC 泵的结构和外流机制
革兰氏阴性细菌对多种药物产生耐药性(MDR)已成为全球关注的问题。这些病原体的多重耐药性与某些外排泵的过度表达密切相关,尤其是耐药结节细胞分裂(RND)外排泵。由于外排泵抑制剂能有效恢复现有抗生素的药效,因此抑制这些泵是一种极具吸引力和前景广阔的抗生素耐药性防治策略。AcrAB-TolC 是一种经过深入研究的 RND 外排泵,它能转运多种底物,因此能对多种抗生素产生耐药性。要开发有效的泵抑制剂,必须全面了解 AcrAB-TolC 外排泵的结构。以前对该泵结构的研究仅限于单个成分或体外测定完全组装的泵。细胞低温电子断层扫描(cryo-ET)技术的最新进展为了解这种泵在原生细胞膜环境中的组装和功能机制提供了新的视角。在此,我们总结了有关 AcrAB-TolC 外排泵的结构数据,揭示了其组装途径和运行机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sub-cellular biochemistry
Sub-cellular biochemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.90
自引率
0.00%
发文量
33
期刊介绍: The book series SUBCELLULAR BIOCHEMISTRY is a renowned and well recognized forum for disseminating advances of emerging topics in Cell Biology and related subjects. All volumes are edited by established scientists and the individual chapters are written by experts on the relevant topic. The individual chapters of each volume are fully citable and indexed in Medline/Pubmed to ensure maximum visibility of the work.
期刊最新文献
Basic Epigenetic Mechanisms. Environmental Enrichment and Epigenetic Changes in the Brain: From the Outside to the Deep Inside. Epigenetic Control in Schizophrenia. Epigenetics in Learning and Memory. Epigenetics in Neurodegenerative Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1