{"title":"SlowMoMan: a web app for discovery of important features along user-drawn trajectories in 2D embeddings.","authors":"Kiran Deol, Griffin M Weber, Yun William Yu","doi":"10.1093/bioadv/vbae095","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Nonlinear low-dimensional embeddings allow humans to visualize high-dimensional data, as is often seen in bioinformatics, where datasets may have tens of thousands of dimensions. However, relating the axes of a nonlinear embedding to the original dimensions is a nontrivial problem. In particular, humans may identify patterns or interesting subsections in the embedding, but cannot easily identify what those patterns correspond to in the original data.</p><p><strong>Results: </strong>Thus, we present SlowMoMan (SLOW Motions on MANifolds), a web application which allows the user to draw a one-dimensional path onto a 2D embedding. Then, by back-projecting the manifold to the original, high-dimensional space, we sort the original features such that those most discriminative along the manifold are ranked highly. We show a number of pertinent use cases for our tool, including trajectory inference, spatial transcriptomics, and automatic cell classification.</p><p><strong>Availability and implementation: </strong>Software: https://yunwilliamyu.github.io/SlowMoMan/; Code: https://github.com/yunwilliamyu/SlowMoMan.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220466/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation: Nonlinear low-dimensional embeddings allow humans to visualize high-dimensional data, as is often seen in bioinformatics, where datasets may have tens of thousands of dimensions. However, relating the axes of a nonlinear embedding to the original dimensions is a nontrivial problem. In particular, humans may identify patterns or interesting subsections in the embedding, but cannot easily identify what those patterns correspond to in the original data.
Results: Thus, we present SlowMoMan (SLOW Motions on MANifolds), a web application which allows the user to draw a one-dimensional path onto a 2D embedding. Then, by back-projecting the manifold to the original, high-dimensional space, we sort the original features such that those most discriminative along the manifold are ranked highly. We show a number of pertinent use cases for our tool, including trajectory inference, spatial transcriptomics, and automatic cell classification.
Availability and implementation: Software: https://yunwilliamyu.github.io/SlowMoMan/; Code: https://github.com/yunwilliamyu/SlowMoMan.
动机非线性低维嵌入允许人类将高维数据可视化,这在生物信息学中很常见,因为数据集可能有成千上万个维度。然而,将非线性嵌入的轴与原始维度相关联是一个非难解决的问题。特别是,人类可以识别出嵌入中的模式或有趣的分段,但却无法轻易识别出这些模式在原始数据中的对应关系:因此,我们提出了SlowMoMan(SLOW Motions on MANifolds),这是一个网络应用程序,允许用户在二维嵌入上绘制一维路径。然后,通过将流形反向投影到原始的高维空间,我们对原始特征进行排序,使那些沿流形最具辨别力的特征排名靠前。我们展示了我们工具的一些相关用例,包括轨迹推断、空间转录组学和自动细胞分类:软件:https://yunwilliamyu.github.io/SlowMoMan/;代码:https://github.com/yunwilliamyu/SlowMoMan。