Shashank Jere;Lizhong Zheng;Karim Said;Lingjia Liu
{"title":"Universal Approximation of Linear Time-Invariant (LTI) Systems Through RNNs: Power of Randomness in Reservoir Computing","authors":"Shashank Jere;Lizhong Zheng;Karim Said;Lingjia Liu","doi":"10.1109/JSTSP.2024.3387274","DOIUrl":null,"url":null,"abstract":"Recurrent neural networks (RNNs) are known to be universal approximators of dynamic systems under fairly mild and general assumptions. However, RNNs usually suffer from the issues of vanishing and exploding gradients in standard RNN training. Reservoir computing (RC), a special RNN where the recurrent weights are randomized and left untrained, has been introduced to overcome these issues and has demonstrated superior empirical performance especially in scenarios where training samples are extremely limited. On the other hand, the theoretical grounding to support this observed performance has yet been fully developed. In this article, we show that RC can universally approximate a general linear time-invariant (LTI) system. Specifically, we present a clear signal processing interpretation of RC and utilize this understanding in the problem of approximating a generic LTI system. Under this setup, we analytically characterize the optimum probability density function for configuring (instead of training and/or randomly generating) the recurrent weights of the underlying RNN of the RC. Extensive numerical evaluations are provided to validate the optimality of the derived distribution for configuring the recurrent weights of the RC to approximate a general LTI system. Our work results in clear signal processing-based model interpretability of RC and provides theoretical explanation/justification for the power of randomness in randomly generating instead of training RC's recurrent weights. Furthermore, it provides a complete optimum analytical characterization for configuring the untrained recurrent weights, marking an important step towards explainable machine learning (XML) to incorporate domain knowledge for efficient learning.","PeriodicalId":13038,"journal":{"name":"IEEE Journal of Selected Topics in Signal Processing","volume":"18 2","pages":"184-198"},"PeriodicalIF":8.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10507760/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Recurrent neural networks (RNNs) are known to be universal approximators of dynamic systems under fairly mild and general assumptions. However, RNNs usually suffer from the issues of vanishing and exploding gradients in standard RNN training. Reservoir computing (RC), a special RNN where the recurrent weights are randomized and left untrained, has been introduced to overcome these issues and has demonstrated superior empirical performance especially in scenarios where training samples are extremely limited. On the other hand, the theoretical grounding to support this observed performance has yet been fully developed. In this article, we show that RC can universally approximate a general linear time-invariant (LTI) system. Specifically, we present a clear signal processing interpretation of RC and utilize this understanding in the problem of approximating a generic LTI system. Under this setup, we analytically characterize the optimum probability density function for configuring (instead of training and/or randomly generating) the recurrent weights of the underlying RNN of the RC. Extensive numerical evaluations are provided to validate the optimality of the derived distribution for configuring the recurrent weights of the RC to approximate a general LTI system. Our work results in clear signal processing-based model interpretability of RC and provides theoretical explanation/justification for the power of randomness in randomly generating instead of training RC's recurrent weights. Furthermore, it provides a complete optimum analytical characterization for configuring the untrained recurrent weights, marking an important step towards explainable machine learning (XML) to incorporate domain knowledge for efficient learning.
期刊介绍:
The IEEE Journal of Selected Topics in Signal Processing (JSTSP) focuses on the Field of Interest of the IEEE Signal Processing Society, which encompasses the theory and application of various signal processing techniques. These techniques include filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals using digital or analog devices. The term "signal" covers a wide range of data types, including audio, video, speech, image, communication, geophysical, sonar, radar, medical, musical, and others.
The journal format allows for in-depth exploration of signal processing topics, enabling the Society to cover both established and emerging areas. This includes interdisciplinary fields such as biomedical engineering and language processing, as well as areas not traditionally associated with engineering.