Perturbation-tuned triple spiral metamagnetism and tricritical point in kagome metal ErMn6Sn6

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-07-01 DOI:10.1038/s43246-024-00552-x
Satya Shanmukharao Samatham, Jacob Casey, Adrienn Maria Szucs, Venkateswara Yenugonda, Christopher Burgio, Theo Siegrist, Arjun K. Pathak
{"title":"Perturbation-tuned triple spiral metamagnetism and tricritical point in kagome metal ErMn6Sn6","authors":"Satya Shanmukharao Samatham, Jacob Casey, Adrienn Maria Szucs, Venkateswara Yenugonda, Christopher Burgio, Theo Siegrist, Arjun K. Pathak","doi":"10.1038/s43246-024-00552-x","DOIUrl":null,"url":null,"abstract":"Kagome materials are of topical interest for their diverse quantum properties linked with correlated magnetism and topology. Here, we report anomalous hydrostatic pressure (p) effect on ErMn6Sn6 through isobaric and isothermal-isobaric magnetization measurements. Magnetic field (H) suppresses antiferromagnetic TN while simultaneously enhancing the ferrimagnetic TC by exhibiting dual metamagnetic transitions, arising from the triple-spiral-nature of Er and Mn spins. Counter-intuitively, pressure enhances both TC and TN with a growth rate of 74.4 K GPa−1 and 14.4 K GPa−1 respectively. Pressure unifies the dual metamagnetic transitions as illustrated through p-H phase diagrams at 140 and 200 K. Temperature-field-pressure (T-H, T-p) phase diagrams illustrate distinct field- and pressure-induced critical points at (Tcr = 246 K, Hcr = 23.3 kOe) and (Tcr = 435.8 K, pcr = 4.74 GPa) respectively. An unusual increase of magnetic entropy by pressure around Tcr and a putative pressure-induced tricritical point pave a unique way of tuning the magnetic properties of kagome magnets through simultaneous application of H and p. The kagome metal ErMn6Sn6 is known to display interesting physics. Here, the simultaneous effect of a magnetic field and pressure is investigated, revealing the role of the spiral behavior of magnetic layers on magnetic transition temperatures","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00552-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00552-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Kagome materials are of topical interest for their diverse quantum properties linked with correlated magnetism and topology. Here, we report anomalous hydrostatic pressure (p) effect on ErMn6Sn6 through isobaric and isothermal-isobaric magnetization measurements. Magnetic field (H) suppresses antiferromagnetic TN while simultaneously enhancing the ferrimagnetic TC by exhibiting dual metamagnetic transitions, arising from the triple-spiral-nature of Er and Mn spins. Counter-intuitively, pressure enhances both TC and TN with a growth rate of 74.4 K GPa−1 and 14.4 K GPa−1 respectively. Pressure unifies the dual metamagnetic transitions as illustrated through p-H phase diagrams at 140 and 200 K. Temperature-field-pressure (T-H, T-p) phase diagrams illustrate distinct field- and pressure-induced critical points at (Tcr = 246 K, Hcr = 23.3 kOe) and (Tcr = 435.8 K, pcr = 4.74 GPa) respectively. An unusual increase of magnetic entropy by pressure around Tcr and a putative pressure-induced tricritical point pave a unique way of tuning the magnetic properties of kagome magnets through simultaneous application of H and p. The kagome metal ErMn6Sn6 is known to display interesting physics. Here, the simultaneous effect of a magnetic field and pressure is investigated, revealing the role of the spiral behavior of magnetic layers on magnetic transition temperatures

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神户金属 ErMn6Sn6 中的扰动调谐三螺旋元磁性和三临界点
卡戈米材料因其与相关磁性和拓扑学有关的各种量子特性而备受关注。在这里,我们通过等压和等温-等压磁化测量,报告了 ErMn6Sn6 的反常静水压力(p)效应。磁场(H)在抑制反铁磁性 TN 的同时,还通过 Er 和 Mn 自旋的三重螺旋性质所产生的双元磁转变,增强了铁磁性 TC。与直觉相反的是,压力会同时增强 TC 和 TN,增长率分别为 74.4 K GPa-1 和 14.4 K GPa-1。温度-场-压力(T-H、T-p)相图显示,在(Tcr = 246 K,Hcr = 23.3 kOe)和(Tcr = 435.8 K,pcr = 4.74 GPa)分别存在不同的场临界点和压力临界点。在 Tcr 附近的压力作用下磁性熵的不寻常增加以及假定的压力诱导三临界点为通过同时应用 H 和 p 来调整卡戈梅磁体的磁性铺平了一条独特的道路。这里研究了磁场和压力的同时效应,揭示了磁层的螺旋行为对磁转变温度的作用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Defect-engineered monolayer MoS2 with enhanced memristive and synaptic functionality for neuromorphic computing High-temperature Brown-Zak oscillations in graphene/hBN moiré field effect transistor fabricated using molecular beam epitaxy Toward direct band gaps in typical 2D transition-metal dichalcogenides junctions via real and energy spaces tuning Transformation of europium metal-organic framework from 3D via 2D into exfoliating 3D for enzyme immobilization Stable and sustainable perovskite solar modules by optimizing blade coating nickel oxide deposition over 15 × 15 cm2 area
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1