Yihong Ji, Martin Frentrup, Simon M Fairclough, Yingjun Liu, Tongtong Zhu and Rachel A Oliver
{"title":"Microscopy studies of InGaN MQWs overgrown on porosified InGaN superlattice pseudo-substrates","authors":"Yihong Ji, Martin Frentrup, Simon M Fairclough, Yingjun Liu, Tongtong Zhu and Rachel A Oliver","doi":"10.1088/1361-6641/ad575b","DOIUrl":null,"url":null,"abstract":"In this study, possible origins of small V-pits observed in multiple quantum wells (MQWs) overgrown on as-grown and porosified InGaN superlattice (SL) pseudo-substrates have been investigated. Various cross-sectional transmission microscopy techniques revealed that some of the small V-pits arise from the intersection of threading defects with the sample surface, either as part of dislocation loops or trench defects. Some small V-pits without threading defects are also observed. Energy dispersive x-ray study indicates that the Indium content in the MQWs increases with the averaged porosity of the underlying template, which may either be attributed to a reduced compositional pulling effect or the low thermal conductivity of the porous layer. Furthermore, the porous structure inhibits the glide or extension of the misfit dislocations (MD) within the InGaN SL. The extra strain induced by the higher Indium content and the hindered movement of the MDs combined may explain the observed additional small V-pits present on the MQWs overgrown on the more relaxed templates.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad575b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, possible origins of small V-pits observed in multiple quantum wells (MQWs) overgrown on as-grown and porosified InGaN superlattice (SL) pseudo-substrates have been investigated. Various cross-sectional transmission microscopy techniques revealed that some of the small V-pits arise from the intersection of threading defects with the sample surface, either as part of dislocation loops or trench defects. Some small V-pits without threading defects are also observed. Energy dispersive x-ray study indicates that the Indium content in the MQWs increases with the averaged porosity of the underlying template, which may either be attributed to a reduced compositional pulling effect or the low thermal conductivity of the porous layer. Furthermore, the porous structure inhibits the glide or extension of the misfit dislocations (MD) within the InGaN SL. The extra strain induced by the higher Indium content and the hindered movement of the MDs combined may explain the observed additional small V-pits present on the MQWs overgrown on the more relaxed templates.
在这项研究中,我们研究了在原生和多孔化 InGaN 超晶格(SL)伪基底上叠加生长的多量子阱(MQW)中观察到的小 V 形坑的可能来源。各种横截面透射显微镜技术显示,一些小 V 形坑是由穿线缺陷与样品表面的交汇处产生的,这些穿线缺陷或是位错环的一部分,或是沟槽缺陷的一部分。此外,还观察到一些没有穿线缺陷的小 V 形凹坑。能量色散 X 射线研究表明,MQW 中的铟含量随着底层模板的平均孔隙率增加而增加,这可能是由于成分拉动效应减弱或多孔层的热传导率较低。此外,多孔结构抑制了 InGaN SL 内错位(MD)的滑行或延伸。铟含量较高引起的额外应变和 MD 运动受阻共同作用,可能解释了为什么在较宽松模板上生长的 MQW 上会出现额外的小 V 形凹坑。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.