ViPErLEED package II: Spot tracking, extraction and processing of I(V) curves

Michael Schmid, Florian Kraushofer, Alexander M. Imre, Tilman Kißlinger, Lutz Hammer, Ulrike Diebold, Michele Riva
{"title":"ViPErLEED package II: Spot tracking, extraction and processing of I(V) curves","authors":"Michael Schmid, Florian Kraushofer, Alexander M. Imre, Tilman Kißlinger, Lutz Hammer, Ulrike Diebold, Michele Riva","doi":"arxiv-2406.18413","DOIUrl":null,"url":null,"abstract":"As part of the ViPErLEED project (Vienna package for Erlangen LEED,\nlow-energy electron diffraction), computer programs have been developed for\nfacile and user-friendly data extraction from movies of LEED images. The\nprograms make use of some concepts from astronomical image processing and\nanalysis. As a first step, flat-field and dark-frame corrections reduce the\neffects of inhomogeneities of the camera and screen. In a second step, for\nidentifying all diffraction maxima (\"spots\"), it is sufficient to manually mark\nand label a single spot or very few spots. Then the program can automatically\nidentify all other spots and determine the distortions of the image. This forms\nthe basis for automatic spot tracking (following the \"beams\" as they move\nacross the LEED screen) and intensity measurement. Even for complex structures\nwith hundreds to a few thousand diffraction beams, this step takes less than a\nminute. The package also includes a program for further processing of these\nI(V) curves (averaging of equivalent beams, manual and/or automatic selection,\nsmoothing) as well as several utilities. The software is implemented as a set\nof plugins for the public-domain image processing program ImageJ and provided\nas an open-source package.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.18413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As part of the ViPErLEED project (Vienna package for Erlangen LEED, low-energy electron diffraction), computer programs have been developed for facile and user-friendly data extraction from movies of LEED images. The programs make use of some concepts from astronomical image processing and analysis. As a first step, flat-field and dark-frame corrections reduce the effects of inhomogeneities of the camera and screen. In a second step, for identifying all diffraction maxima ("spots"), it is sufficient to manually mark and label a single spot or very few spots. Then the program can automatically identify all other spots and determine the distortions of the image. This forms the basis for automatic spot tracking (following the "beams" as they move across the LEED screen) and intensity measurement. Even for complex structures with hundreds to a few thousand diffraction beams, this step takes less than a minute. The package also includes a program for further processing of these I(V) curves (averaging of equivalent beams, manual and/or automatic selection, smoothing) as well as several utilities. The software is implemented as a set of plugins for the public-domain image processing program ImageJ and provided as an open-source package.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ViPErLEED 软件包 II:I(V) 曲线的点跟踪、提取和处理
作为 ViPErLEED 项目(埃尔兰根 LEED 低能电子衍射维也纳软件包)的一部分,我们开发了计算机程序,以便从 LEED 图像的电影中提取方便易用的数据。这些程序利用了天文图像处理和分析中的一些概念。第一步,平场和暗帧校正减少了相机和屏幕不均匀性的影响。第二步,为了识别所有衍射最大值("光斑"),只需手动标记和标注一个或几个光斑。然后,程序就可以自动识别所有其他光斑,并确定图像的失真度。这就为自动光斑跟踪(跟随 "光束 "在 LEED 屏幕上移动)和强度测量奠定了基础。即使是数百到数千个衍射光束的复杂结构,这一步骤也只需不到一分钟的时间。软件包还包括一个用于进一步处理这些 I(V) 曲线的程序(等效光束平均、手动和/或自动选择、平滑)以及若干实用程序。该软件是作为公共领域图像处理程序 ImageJ 的一套插件实现的,并作为一个开源软件包提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1