Encoder-Decoder Neural Networks in Interpretation of X-ray Spectra

Jalmari Passilahti, Anton Vladyka, Johannes Niskanen
{"title":"Encoder-Decoder Neural Networks in Interpretation of X-ray Spectra","authors":"Jalmari Passilahti, Anton Vladyka, Johannes Niskanen","doi":"arxiv-2406.14044","DOIUrl":null,"url":null,"abstract":"Encoder-decoder neural networks (EDNN) condense information most relevant to\nthe output of the feedforward network to activation values at a bottleneck\nlayer. We study the use of this architecture in emulation and interpretation of\nsimulated X-ray spectroscopic data with the aim to identify key structural\ncharacteristics for the spectra, previously studied using emulator-based\ncomponent analysis (ECA). We find an EDNN to outperform ECA in covered target\nvariable variance, but also discover complications in interpreting the latent\nvariables in physical terms. As a compromise of the benefits of these two\napproaches, we develop a network where the linear projection of ECA is used,\nthus maintaining the beneficial characteristics of vector expansion from the\nlatent variables for their interpretation. These results underline the\nnecessity of information recovery after its condensation and identification of\ndecisive structural degrees for the output spectra for a justified\ninterpretation.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.14044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Encoder-decoder neural networks (EDNN) condense information most relevant to the output of the feedforward network to activation values at a bottleneck layer. We study the use of this architecture in emulation and interpretation of simulated X-ray spectroscopic data with the aim to identify key structural characteristics for the spectra, previously studied using emulator-based component analysis (ECA). We find an EDNN to outperform ECA in covered target variable variance, but also discover complications in interpreting the latent variables in physical terms. As a compromise of the benefits of these two approaches, we develop a network where the linear projection of ECA is used, thus maintaining the beneficial characteristics of vector expansion from the latent variables for their interpretation. These results underline the necessity of information recovery after its condensation and identification of decisive structural degrees for the output spectra for a justified interpretation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解读 X 射线光谱的编码器-解码器神经网络
编码器-解码器神经网络(EDNN)将与前馈网络输出最相关的信息浓缩为瓶颈层的激活值。我们研究了这种结构在模拟和解释模拟 X 射线光谱数据中的应用,目的是识别光谱的关键结构特征。我们发现 EDNN 在覆盖目标变量方差方面优于 ECA,但也发现了用物理术语解释潜变量的复杂性。为了折中这两种方法的优点,我们开发了一种使用 ECA 线性投影的网络,从而保持了从潜在变量向量扩展来解释潜在变量的有利特性。这些结果凸显了在信息浓缩后进行信息恢复的必要性,以及为输出光谱确定决定性结构度以进行合理解释的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1