Insights into Dark Matter Direct Detection Experiments: Decision Trees versus Deep Learning

Daniel E. Lopez-Fogliani, Andres D. Perez, Roberto Ruiz de Austri
{"title":"Insights into Dark Matter Direct Detection Experiments: Decision Trees versus Deep Learning","authors":"Daniel E. Lopez-Fogliani, Andres D. Perez, Roberto Ruiz de Austri","doi":"arxiv-2406.10372","DOIUrl":null,"url":null,"abstract":"The detection of Dark Matter (DM) remains a significant challenge in particle\nphysics. This study exploits advanced machine learning models to improve\ndetection capabilities of liquid xenon time projection chamber experiments,\nutilizing state-of-the-art transformers alongside traditional methods like\nMultilayer Perceptrons and Convolutional Neural Networks. We evaluate various\ndata representations and find that simplified feature representations,\nparticularly corrected S1 and S2 signals, retain critical information for\nclassification. Our results show that while transformers offer promising\nperformance, simpler models like XGBoost can achieve comparable results with\noptimal data representations. We also derive exclusion limits in the\ncross-section versus DM mass parameter space, showing minimal differences\nbetween XGBoost and the best performing deep learning models. The comparative\nanalysis of different machine learning approaches provides a valuable reference\nfor future experiments by guiding the choice of models and data representations\nto maximize detection capabilities.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.10372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The detection of Dark Matter (DM) remains a significant challenge in particle physics. This study exploits advanced machine learning models to improve detection capabilities of liquid xenon time projection chamber experiments, utilizing state-of-the-art transformers alongside traditional methods like Multilayer Perceptrons and Convolutional Neural Networks. We evaluate various data representations and find that simplified feature representations, particularly corrected S1 and S2 signals, retain critical information for classification. Our results show that while transformers offer promising performance, simpler models like XGBoost can achieve comparable results with optimal data representations. We also derive exclusion limits in the cross-section versus DM mass parameter space, showing minimal differences between XGBoost and the best performing deep learning models. The comparative analysis of different machine learning approaches provides a valuable reference for future experiments by guiding the choice of models and data representations to maximize detection capabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
暗物质直接探测实验的启示:决策树与深度学习
暗物质(DM)的探测仍然是粒子物理学中的一项重大挑战。本研究利用先进的机器学习模型来提高液态氙时间投影室实验的探测能力,在使用多层感知器和卷积神经网络等传统方法的同时,还使用了最先进的变压器。我们对各种数据表示进行了评估,发现简化的特征表示,尤其是校正后的 S1 和 S2 信号,保留了分类的关键信息。我们的结果表明,虽然变换器的性能很有前途,但 XGBoost 等更简单的模型也能通过最佳数据表示获得与之相当的结果。我们还得出了横截面与 DM 质量参数空间的排除限制,显示 XGBoost 与表现最佳的深度学习模型之间的差异极小。不同机器学习方法的比较分析为未来的实验提供了有价值的参考,指导了模型和数据表示的选择,从而最大限度地提高了探测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1