Soft theorems for boostless amplitudes

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Journal of High Energy Physics Pub Date : 2024-07-02 DOI:10.1007/jhep07(2024)011
Zong-Zhe Du, David Stefanyszyn
{"title":"Soft theorems for boostless amplitudes","authors":"Zong-Zhe Du, David Stefanyszyn","doi":"10.1007/jhep07(2024)011","DOIUrl":null,"url":null,"abstract":"<p>We consider effective field theories (EFTs) of scalar fields with broken Lorentz boosts, which arise by taking the decoupling and flat-space limits of the EFT of inflation, and derive constraints that must be satisfied by the corresponding scattering amplitudes if there is an underlying non-linearly realised symmetry. We primarily concentrate on extended shift symmetries which depend on the space-time coordinates, and find that <i>combinations</i> of scattering amplitudes obey enhanced Adler zeros. That is, such combinations vanish as one external momentum is taken soft, with the rate at which they vanish dictated by the corresponding symmetry. In our soft theorem derivation, we pay particular care to the energy and momentum-conserving delta functions that arise due to space-time translations, and show that when acted upon by derivatives with respect to spatial momenta, they yield a tower of soft theorems which are ultimately required for closure of the underlying symmetry algebra. All of our soft theorems correspond to constraints that must be satisfied by on-shell amplitudes and, even for symmetries that depend on the time coordinate, our soft theorems only require derivatives to be taken with respect to spatial momenta. We perform a soft bootstrap procedure to find solutions to our soft theorems, and compare these solutions to what we find from an off-shell analysis using the coset construction.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/jhep07(2024)011","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We consider effective field theories (EFTs) of scalar fields with broken Lorentz boosts, which arise by taking the decoupling and flat-space limits of the EFT of inflation, and derive constraints that must be satisfied by the corresponding scattering amplitudes if there is an underlying non-linearly realised symmetry. We primarily concentrate on extended shift symmetries which depend on the space-time coordinates, and find that combinations of scattering amplitudes obey enhanced Adler zeros. That is, such combinations vanish as one external momentum is taken soft, with the rate at which they vanish dictated by the corresponding symmetry. In our soft theorem derivation, we pay particular care to the energy and momentum-conserving delta functions that arise due to space-time translations, and show that when acted upon by derivatives with respect to spatial momenta, they yield a tower of soft theorems which are ultimately required for closure of the underlying symmetry algebra. All of our soft theorems correspond to constraints that must be satisfied by on-shell amplitudes and, even for symmetries that depend on the time coordinate, our soft theorems only require derivatives to be taken with respect to spatial momenta. We perform a soft bootstrap procedure to find solutions to our soft theorems, and compare these solutions to what we find from an off-shell analysis using the coset construction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无助推振幅的软定理
我们考虑了具有断裂洛伦兹助推的标量场有效场论(EFT),它是通过对膨胀 EFT 进行解耦和平空极限而产生的,并推导出如果存在潜在的非线性实现对称性,相应的散射振幅必须满足的约束条件。我们主要关注依赖于时空坐标的扩展位移对称性,并发现散射振幅的组合服从增强的阿德勒零点。也就是说,当一个外部动量被软化时,这些组合就会消失,消失的速度由相应的对称性决定。在我们的软定理推导中,我们特别关注因时空平移而产生的能量和动量守恒三角函数,并证明当它们受到与空间动量有关的导数作用时,就会产生软定理塔,而这些软定理塔最终是基础对称代数闭合所必需的。我们的所有软定理都与壳上振幅必须满足的约束条件相对应,即使对于依赖于时间坐标的对称性,我们的软定理也只要求对空间矩取导数。我们采用软引导程序来寻找软定理的解,并将这些解与我们利用余集构造进行的壳外分析所发现的解进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
期刊最新文献
Unveiling desert region in inert doublet model assisted by Peccei-Quinn symmetry Spontaneous CP violation in supersymmetric QCD The linear property of genus-g, n-point, b-boundary, c-crosscap correlation functions in two-dimensional conformal field theory Freeze-in as a complementary process to freeze-out Heavy flavor production under a strong magnetic field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1