首页 > 最新文献

Journal of High Energy Physics最新文献

英文 中文
The edge of random tensor eigenvalues with deviation
IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-14 DOI: 10.1007/JHEP01(2025)071
Nicolas Delporte, Naoki Sasakura

The largest eigenvalue of random tensors is an important feature of systems involving disorder, equivalent to the ground state energy of glassy systems or to the injective norm of quantum states. For symmetric Gaussian random tensors of order 3 and of size N, in the presence of a Gaussian noise, continuing the work [1], we compute the genuine and signed eigenvalue distributions, using field theoretic methods at large N combined with earlier rigorous results of [2]. We characterize the behaviour of the edge of the two distributions as the variance of the noise increases. We find two critical values of the variance, the first of which corresponding to the emergence of an outlier from the main part of the spectrum and the second where this outlier merges with the corresponding largest eigenvalue and they both become complex. We support our claims with Monte Carlo simulations. We believe that our results set the ground for a definition of pseudospectrum of random tensors based on Z-eigenvalues.

{"title":"The edge of random tensor eigenvalues with deviation","authors":"Nicolas Delporte,&nbsp;Naoki Sasakura","doi":"10.1007/JHEP01(2025)071","DOIUrl":"10.1007/JHEP01(2025)071","url":null,"abstract":"<p>The largest eigenvalue of random tensors is an important feature of systems involving disorder, equivalent to the ground state energy of glassy systems or to the injective norm of quantum states. For symmetric Gaussian random tensors of order 3 and of size <i>N</i>, in the presence of a Gaussian noise, continuing the work [1], we compute the genuine and signed eigenvalue distributions, using field theoretic methods at large <i>N</i> combined with earlier rigorous results of [2]. We characterize the behaviour of the edge of the two distributions as the variance of the noise increases. We find two critical values of the variance, the first of which corresponding to the emergence of an outlier from the main part of the spectrum and the second where this outlier merges with the corresponding largest eigenvalue and they both become complex. We support our claims with Monte Carlo simulations. We believe that our results set the ground for a definition of pseudospectrum of random tensors based on Z-eigenvalues.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)071.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tridiagonal Hamiltonians modeling the density of states of the double-scaled SYK model
IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-14 DOI: 10.1007/JHEP01(2025)072
Pratik Nandy

By analyzing the global density of states (DOS) in the Double-Scaled Sachdev-Ye-Kitaev (DSSYK) model, we construct a finite-dimensional Hamiltonian that replicates this DOS. We then tridiagonalize the Hamiltonian to determine the mean Lanczos coefficients within the parameter range. The bulk Lanczos coefficients, especially the Lanczos descent can be analytically expressed as a particular q-deformation of the logarithm. Our numerical results are further corroborated by semi-analytical findings, a random matrix potential construction in the bulk, and the analytic results at the edge of the Lanczos spectra using the method of moments.

{"title":"Tridiagonal Hamiltonians modeling the density of states of the double-scaled SYK model","authors":"Pratik Nandy","doi":"10.1007/JHEP01(2025)072","DOIUrl":"10.1007/JHEP01(2025)072","url":null,"abstract":"<p>By analyzing the global density of states (DOS) in the Double-Scaled Sachdev-Ye-Kitaev (DSSYK) model, we construct a finite-dimensional Hamiltonian that replicates this DOS. We then tridiagonalize the Hamiltonian to determine the mean Lanczos coefficients within the parameter range. The bulk Lanczos coefficients, especially the <i>Lanczos descent</i> can be analytically expressed as a particular <i>q</i>-deformation of the logarithm. Our numerical results are further corroborated by semi-analytical findings, a random matrix potential construction in the bulk, and the analytic results at the edge of the Lanczos spectra using the method of moments.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)072.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kodaira-Spencer anomalies with Stora-Zumino method
IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-14 DOI: 10.1007/JHEP01(2025)073
Davide Rovere

Holomorphic diffeomorphism anomalies of 2 n-dimensional gravitational theories in Beltrami parametrisation (Kodaira-Spencer anomalies) are computed in the brst framework, using an extension of the Stora-Zumino method. This method, which allows to compute anomalies in a very concise way, makes manifest the topological origin of anomalies. They have a clear geometric interpretation, since they are expressed in terms of Chern polynomials and Pontryagin invariants. The key ingredient is the formulation of the brst transformations in terms of polyforms, whose total degree is the sum of the form degree and of the ghost number. This approach simplifies significantly the analysis available in literature and it allows to compute many other solutions. Namely, an anomaly, which was computed using different methods, is proved to be a consistent brst anomaly, thereby supplementing a conclusion in a previous analysis.

{"title":"Kodaira-Spencer anomalies with Stora-Zumino method","authors":"Davide Rovere","doi":"10.1007/JHEP01(2025)073","DOIUrl":"10.1007/JHEP01(2025)073","url":null,"abstract":"<p>Holomorphic diffeomorphism anomalies of 2 <i>n</i>-dimensional gravitational theories in Beltrami parametrisation (Kodaira-Spencer anomalies) are computed in the <span>brst</span> framework, using an extension of the Stora-Zumino method. This method, which allows to compute anomalies in a very concise way, makes manifest the topological origin of anomalies. They have a clear geometric interpretation, since they are expressed in terms of Chern polynomials and Pontryagin invariants. The key ingredient is the formulation of the <span>brst</span> transformations in terms of polyforms, whose total degree is the sum of the form degree and of the ghost number. This approach simplifies significantly the analysis available in literature and it allows to compute many other solutions. Namely, an anomaly, which was computed using different methods, is proved to be a consistent <span>brst</span> anomaly, thereby supplementing a conclusion in a previous analysis.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)073.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The two-loop coefficient functions for double deeply virtual Compton scattering
IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-14 DOI: 10.1007/JHEP01(2025)069
Vladimir M. Braun, Hua-Yu Jiang, Alexander N. Manashov, Andreas von Manteuffel

Making use of conformal symmetry of large-nf QCD in d = 4 – 2ϵ dimensions at the Wilson-Fischer fixed point, we calculate the two-loop coefficient functions in the operator product expansion of two electromagnetic currents in general kinematics with two different photon virtualities. This result is necessary for the description of the double deeply virtual Compton scattering to the next-to-next-to-leading order accuracy, but is also interesting for a range of other two-photon processes. We present analytic expression for the coefficient function in momentum fraction space in the ( overline{textrm{MS}} ) scheme and study its numerical impact on the Compton form factors for a simple model of the generalized parton distributions. The calculated corrections turn out to be large and are significant for the kinematics of proposed experiments.

{"title":"The two-loop coefficient functions for double deeply virtual Compton scattering","authors":"Vladimir M. Braun,&nbsp;Hua-Yu Jiang,&nbsp;Alexander N. Manashov,&nbsp;Andreas von Manteuffel","doi":"10.1007/JHEP01(2025)069","DOIUrl":"10.1007/JHEP01(2025)069","url":null,"abstract":"<p>Making use of conformal symmetry of large-<i>n</i><sub><i>f</i></sub> QCD in <i>d</i> = 4 – 2<i>ϵ</i> dimensions at the Wilson-Fischer fixed point, we calculate the two-loop coefficient functions in the operator product expansion of two electromagnetic currents in general kinematics with two different photon virtualities. This result is necessary for the description of the double deeply virtual Compton scattering to the next-to-next-to-leading order accuracy, but is also interesting for a range of other two-photon processes. We present analytic expression for the coefficient function in momentum fraction space in the <span>( overline{textrm{MS}} )</span> scheme and study its numerical impact on the Compton form factors for a simple model of the generalized parton distributions. The calculated corrections turn out to be large and are significant for the kinematics of proposed experiments.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)069.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Testing holographic entropy inequalities in 2 + 1 dimensions
IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-10 DOI: 10.1007/JHEP01(2025)065
Brianna Grado-White, Guglielmo Grimaldi, Matthew Headrick, Veronika E. Hubeny

We address the question of whether holographic entropy inequalities obeyed in static states (by the RT formula) are always obeyed in time-dependent states (by the HRT formula), focusing on the case where the bulk spacetime is 2 + 1 dimensional. An affirmative answer to this question was previously claimed by Czech-Dong. We point out an error in their proof when the bulk is multiply connected. We nonetheless find strong support, of two kinds, for an affirmative answer in that case. We extend the Czech-Dong proof for simply-connected spacetimes to spacetimes with π1 = (i.e. 2-boundary, genus-0 wormholes). Specializing to vacuum solutions, we also numerically test thousands of distinct inequalities (including all known RT inequalities for up to 6 regions) on millions of randomly chosen configurations of regions and bulk spacetimes, including three different multiply-connected topologies; we find no counterexamples. In an appendix, we prove some (dimension-independent) facts about degenerate HRT surfaces and symmetry breaking.

A video abstract is available at https://www.youtube.com/watch?v=ols92YU8rus.

{"title":"Testing holographic entropy inequalities in 2 + 1 dimensions","authors":"Brianna Grado-White,&nbsp;Guglielmo Grimaldi,&nbsp;Matthew Headrick,&nbsp;Veronika E. Hubeny","doi":"10.1007/JHEP01(2025)065","DOIUrl":"10.1007/JHEP01(2025)065","url":null,"abstract":"<p>We address the question of whether holographic entropy inequalities obeyed in static states (by the RT formula) are always obeyed in time-dependent states (by the HRT formula), focusing on the case where the bulk spacetime is 2 + 1 dimensional. An affirmative answer to this question was previously claimed by Czech-Dong. We point out an error in their proof when the bulk is multiply connected. We nonetheless find strong support, of two kinds, for an affirmative answer in that case. We extend the Czech-Dong proof for simply-connected spacetimes to spacetimes with <i>π</i><sub>1</sub> = <i>ℤ</i> (i.e. 2-boundary, genus-0 wormholes). Specializing to vacuum solutions, we also numerically test thousands of distinct inequalities (including all known RT inequalities for up to 6 regions) on millions of randomly chosen configurations of regions and bulk spacetimes, including three different multiply-connected topologies; we find no counterexamples. In an appendix, we prove some (dimension-independent) facts about degenerate HRT surfaces and symmetry breaking.</p><p>A video abstract is available at https://www.youtube.com/watch?v=ols92YU8rus.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)065.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KrkNLO matching for colour-singlet processes
IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-10 DOI: 10.1007/JHEP01(2025)062
Pratixan Sarmah, Andrzej Siódmok, James Whitehead

Matched calculations combining perturbative QCD with parton showers are an indispensable tool for LHC physics. Two methods for NLO matching are in widespread use: Mc@Nlo and Powheg. We describe an alternative, KrkNLO, reformulated to be easily applicable to any colour-singlet process. The primary distinguishing characteristic of KrkNLO is its use of an alternative factorisation scheme, the ‘Krk’ scheme, to achieve NLO accuracy. We describe the general implementation of KrkNLO in Herwig 7, using diphoton production as a test process. We systematically compare its predictions to those produced by Mc@Nlo with several different choices of shower scale, both truncated to one-emission and with the shower running to completion, and to Atlas data from LHC Run 2.

{"title":"KrkNLO matching for colour-singlet processes","authors":"Pratixan Sarmah,&nbsp;Andrzej Siódmok,&nbsp;James Whitehead","doi":"10.1007/JHEP01(2025)062","DOIUrl":"10.1007/JHEP01(2025)062","url":null,"abstract":"<p>Matched calculations combining perturbative QCD with parton showers are an indispensable tool for LHC physics. Two methods for NLO matching are in widespread use: M<span>c</span>@N<span>lo</span> and P<span>owheg</span>. We describe an alternative, KrkNLO, reformulated to be easily applicable to any colour-singlet process. The primary distinguishing characteristic of KrkNLO is its use of an alternative factorisation scheme, the ‘Krk’ scheme, to achieve NLO accuracy. We describe the general implementation of KrkNLO in Herwig 7, using diphoton production as a test process. We systematically compare its predictions to those produced by M<span>c</span>@N<span>lo</span> with several different choices of shower scale, both truncated to one-emission and with the shower running to completion, and to A<span>tlas</span> data from LHC Run 2.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)062.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Replica wormholes and entanglement islands in the Karch-Randall braneworld
IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-10 DOI: 10.1007/JHEP01(2025)063
Hao Geng

The Karch-Randall braneworld provides a natural set-up to study the Hawking radiation from a black hole using holographic tools. Such a black hole lives on a brane and is highly quantum yet has a holographic dual as a higher dimensional classical theory that lives in the ambient space. Moreover, such a black hole is coupled to a nongravitational bath which is absorbing its Hawking radiation. This allows us to compute the entropy of the Hawking radiation by studying the bath using the quantum extremal surface prescription. The quantum extremal surface geometrizes into a Ryu-Takayanagi surface in the ambient space. The topological phase transition of the Ryu-Takayanagi surface in time from connecting different portions of the bath to the one connecting the bath and the brane gives the Page curve of the Hawking radiation that is consistent with unitarity. Nevertheless, there doesn’t exit a derivation of the quantum extremal surface prescription and its geometrization in the Karch-Randall braneworld. In this paper, we fill this gap. We mainly focus on the case that the ambient space is (2+1)-dimensional for which explicit computations can be done in each description of the set-up. We show that the topological phase transition of the Ryu-Takayanagi surface corresponds to the formation of the replica wormhole on the Karch-Randall brane as the dominant contribution to the replica path integral. For higher dimensional situations, we show that the geometry of the brane satisfies Einstein’s equation coupled with conformal matter. We comment on possible implications to the general rule of gravitational path integral from this equation.

{"title":"Replica wormholes and entanglement islands in the Karch-Randall braneworld","authors":"Hao Geng","doi":"10.1007/JHEP01(2025)063","DOIUrl":"10.1007/JHEP01(2025)063","url":null,"abstract":"<p>The Karch-Randall braneworld provides a natural set-up to study the Hawking radiation from a black hole using holographic tools. Such a black hole lives on a brane and is highly quantum yet has a holographic dual as a higher dimensional classical theory that lives in the ambient space. Moreover, such a black hole is coupled to a nongravitational bath which is absorbing its Hawking radiation. This allows us to compute the entropy of the Hawking radiation by studying the bath using the quantum extremal surface prescription. The quantum extremal surface geometrizes into a Ryu-Takayanagi surface in the ambient space. The topological phase transition of the Ryu-Takayanagi surface in time from connecting different portions of the bath to the one connecting the bath and the brane gives the Page curve of the Hawking radiation that is consistent with unitarity. Nevertheless, there doesn’t exit a derivation of the quantum extremal surface prescription and its geometrization in the Karch-Randall braneworld. In this paper, we fill this gap. We mainly focus on the case that the ambient space is (2+1)-dimensional for which explicit computations can be done in each description of the set-up. We show that the topological phase transition of the Ryu-Takayanagi surface corresponds to the formation of the replica wormhole on the Karch-Randall brane as the dominant contribution to the replica path integral. For higher dimensional situations, we show that the geometry of the brane satisfies Einstein’s equation coupled with conformal matter. We comment on possible implications to the general rule of gravitational path integral from this equation.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)063.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subregion duality, wedge classification and no global symmetries in AdS/CFT
IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-10 DOI: 10.1007/JHEP01(2025)064
Ning Bao, Yikun Jiang, Joydeep Naskar

We study various notions of ‘subregion duality’ in the context of AdS/CFT. We highlight the differences between the ‘background wedge’ and the ‘operator reconstruction wedges,’ providing a resolution to the paradox raised in [1]. Additionally, we elucidate the distinctions between four different ‘operator reconstruction wedges’ and demonstrate how to enhance the proof for the absence of global symmetries in geometrical states in AdS/CFT [2, 3] as an example of these distinctions.

{"title":"Subregion duality, wedge classification and no global symmetries in AdS/CFT","authors":"Ning Bao,&nbsp;Yikun Jiang,&nbsp;Joydeep Naskar","doi":"10.1007/JHEP01(2025)064","DOIUrl":"10.1007/JHEP01(2025)064","url":null,"abstract":"<p>We study various notions of ‘subregion duality’ in the context of AdS/CFT. We highlight the differences between the ‘background wedge’ and the ‘operator reconstruction wedges,’ providing a resolution to the paradox raised in [1]. Additionally, we elucidate the distinctions between four different ‘operator reconstruction wedges’ and demonstrate how to enhance the proof for the absence of global symmetries in geometrical states in AdS/CFT [2, 3] as an example of these distinctions.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)064.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entanglement asymmetry and symmetry defects in boundary conformal field theory
IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-09 DOI: 10.1007/JHEP01(2025)057
Yuya Kusuki, Sara Murciano, Hirosi Ooguri, Sridip Pal

A state in a quantum system with a given global symmetry, G, can be sensitive to the presence of boundaries, which may either preserve or break this symmetry. In this work, we investigate how conformal invariant boundary conditions influence the G-symmetry breaking through the lens of the entanglement asymmetry, a quantifier of the “distance” between a symmetry-broken state and its symmetrized counterpart. By leveraging 2D boundary conformal field theory (BCFT), we investigate the symmetry breaking for both finite and compact Lie groups. Beyond the leading order term, we also compute the subleading corrections in the subsystem size, highlighting their dependence on the symmetry group G and the BCFT operator content. We further explore the entanglement asymmetry following a global quantum quench, where a symmetry-broken state evolves under a symmetry-restoring Hamiltonian. In this dynamical setting, we compute the entanglement asymmetry by extending the method of images to a BCFT with non-local objects such as invertible symmetry defects.

{"title":"Entanglement asymmetry and symmetry defects in boundary conformal field theory","authors":"Yuya Kusuki,&nbsp;Sara Murciano,&nbsp;Hirosi Ooguri,&nbsp;Sridip Pal","doi":"10.1007/JHEP01(2025)057","DOIUrl":"10.1007/JHEP01(2025)057","url":null,"abstract":"<p>A state in a quantum system with a given global symmetry, <i>G</i>, can be sensitive to the presence of boundaries, which may either preserve or break this symmetry. In this work, we investigate how conformal invariant boundary conditions influence the <i>G</i>-symmetry breaking through the lens of the entanglement asymmetry, a quantifier of the “distance” between a symmetry-broken state and its symmetrized counterpart. By leveraging 2D boundary conformal field theory (BCFT), we investigate the symmetry breaking for both finite and compact Lie groups. Beyond the leading order term, we also compute the subleading corrections in the subsystem size, highlighting their dependence on the symmetry group <i>G</i> and the BCFT operator content. We further explore the entanglement asymmetry following a global quantum quench, where a symmetry-broken state evolves under a symmetry-restoring Hamiltonian. In this dynamical setting, we compute the entanglement asymmetry by extending the method of images to a BCFT with non-local objects such as invertible symmetry defects.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)057.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142939079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement of CP violation in B0 → D+D− and ( {textrm{B}}_{textrm{s}}^0 ) → ( {textrm{D}}_{textrm{s}}^{+}{textrm{D}}_{textrm{s}}^{-} ) decays
IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2025-01-09 DOI: 10.1007/JHEP01(2025)061
The LHCb collaboration, R. Aaij, A. S. W. Abdelmotteleb, C. Abellan Beteta, F. Abudinén, T. Ackernley, A. A. Adefisoye, B. Adeva, M. Adinolfi, P. Adlarson, C. Agapopoulou, C. A. Aidala, Z. Ajaltouni, S. Akar, K. Akiba, P. Albicocco, J. Albrecht, F. Alessio, M. Alexander, Z. Aliouche, P. Alvarez Cartelle, R. Amalric, S. Amato, J. L. Amey, Y. Amhis, L. An, L. Anderlini, M. Andersson, A. Andreianov, P. Andreola, M. Andreotti, D. Andreou, A. Anelli, D. Ao, F. Archilli, M. Argenton, S. Arguedas Cuendis, A. Artamonov, M. Artuso, E. Aslanides, R. Ataíde Da Silva, M. Atzeni, B. Audurier, D. Bacher, I. Bachiller Perea, S. Bachmann, M. Bachmayer, J. J. Back, P. Baladron Rodriguez, V. Balagura, W. Baldini, L. Balzani, H. Bao, J. Baptista de Souza Leite, C. Barbero Pretel, M. Barbetti, I. R. Barbosa, R. J. Barlow, M. Barnyakov, S. Barsuk, W. Barter, M. Bartolini, J. Bartz, J. M. Basels, S. Bashir, G. Bassi, B. Batsukh, P. B. Battista, A. Bay, A. Beck, M. Becker, F. Bedeschi, I. B. Bediaga, N. A. Behling, S. Belin, V. Bellee, K. Belous, I. Belov, I. Belyaev, G. Benane, G. Bencivenni, E. Ben-Haim, A. Berezhnoy, R. Bernet, S. Bernet Andres, A. Bertolin, C. Betancourt, F. Betti, J. Bex, Ia. Bezshyiko, J. Bhom, M. S. Bieker, N. V. Biesuz, P. Billoir, A. Biolchini, M. Birch, F. C. R. Bishop, A. Bitadze, A. Bizzeti, T. Blake, F. Blanc, J. E. Blank, S. Blusk, V. Bocharnikov, J. A. Boelhauve, O. Boente Garcia, T. Boettcher, A. Bohare, A. Boldyrev, C. S. Bolognani, R. Bolzonella, N. Bondar, A. Bordelius, F. Borgato, S. Borghi, M. Borsato, J. T. Borsuk, S. A. Bouchiba, M. Bovill, T. J. V. Bowcock, A. Boyer, C. Bozzi, A. Brea Rodriguez, N. Breer, J. Brodzicka, A. Brossa Gonzalo, J. Brown, D. Brundu, E. Buchanan, A. Buonaura, L. Buonincontri, A. T. Burke, C. Burr, J. S. Butter, J. Buytaert, W. Byczynski, S. Cadeddu, H. Cai, A. C. Caillet, R. Calabrese, S. Calderon Ramirez, L. Calefice, S. Cali, M. Calvi, M. Calvo Gomez, P. Camargo Magalhaes, J. I. Cambon Bouzas, P. Campana, D. H. Campora Perez, A. F. Campoverde Quezada, S. Capelli, L. Capriotti, R. Caravaca-Mora, A. Carbone, L. Carcedo Salgado, R. Cardinale, A. Cardini, P. Carniti, L. Carus, A. Casais Vidal, R. Caspary, G. Casse, J. Castro Godinez, M. Cattaneo, G. Cavallero, V. Cavallini, S. Celani, D. Cervenkov, S. Cesare, A. J. Chadwick, I. Chahrour, M. Charles, Ph. Charpentier, E. Chatzianagnostou, M. Chefdeville, C. Chen, S. Chen, Z. Chen, A. Chernov, S. Chernyshenko, X. Chiotopoulos, V. Chobanova, S. Cholak, M. Chrzaszcz, A. Chubykin, V. Chulikov, P. Ciambrone, X. Cid Vidal, G. Ciezarek, P. Cifra, P. E. L. Clarke, M. Clemencic, H. V. Cliff, J. Closier, C. Cocha Toapaxi, V. Coco, J. Cogan, E. Cogneras, L. Cojocariu, P. Collins, T. Colombo, M. Colonna, A. Comerma-Montells, L. Congedo, A. Contu, N. Cooke, I. Corredoira, A. Correia, G. Corti, J. Cottee Meldrum, B. Couturier, D. C. Craik, M. Cruz Torres, E. Curras Rivera, R. Currie, C. L. Da Silva, S. Dadabaev, L. Dai, X. Dai, E. Dall’Occo, J. Dalseno, C. D’Ambrosio, J. Daniel, A. Danilina, P. d’Argent, A. Davidson, J. E. Davies, A. Davis, O. De Aguiar Francisco, C. De Angelis, F. De Benedetti, J. de Boer, K. De Bruyn, S. De Capua, M. De Cian, U. De Freitas Carneiro Da Graca, E. De Lucia, J. M. De Miranda, L. De Paula, M. De Serio, P. De Simone, F. De Vellis, J. A. de Vries, F. Debernardis, D. Decamp, V. Dedu, S. Dekkers, L. Del Buono, B. Delaney, H.-P. Dembinski, J. Deng, V. Denysenko, O. Deschamps, F. Dettori, B. Dey, P. Di Nezza, I. Diachkov, S. Didenko, S. Ding, L. Dittmann, V. Dobishuk, A. D. Docheva, C. Dong, A. M. Donohoe, F. Dordei, A. C. dos Reis, A. D. Dowling, W. Duan, P. Duda, M. W. Dudek, L. Dufour, V. Duk, P. Durante, M. M. Duras, J. M. Durham, O. D. Durmus, A. Dziurda, A. Dzyuba, S. Easo, E. Eckstein, U. Egede, A. Egorychev, V. Egorychev, S. Eisenhardt, E. Ejopu, L. Eklund, M. Elashri, J. Ellbracht, S. Ely, A. Ene, E. Epple, J. Eschle, S. Esen, T. Evans, F. Fabiano, L. N. Falcao, Y. Fan, B. Fang, L. Fantini, M. Faria, K. Farmer, D. Fazzini, L. Felkowski, M. Feng, M. Feo, A. Fernandez Casani, M. Fernandez Gomez, A. D. Fernez, F. Ferrari, F. Ferreira Rodrigues, M. Ferrillo, M. Ferro-Luzzi, S. Filippov, R. A. Fini, M. Fiorini, M. Firlej, K. L. Fischer, D. S. Fitzgerald, C. Fitzpatrick, T. Fiutowski, F. Fleuret, M. Fontana, L. F. Foreman, R. Forty, D. Foulds-Holt, V. Franco Lima, M. Franco Sevilla, M. Frank, E. Franzoso, G. Frau, C. Frei, D. A. Friday, J. Fu, Q. Führing, Y. Fujii, T. Fulghesu, E. Gabriel, G. Galati, M. D. Galati, A. Gallas Torreira, D. Galli, S. Gambetta, M. Gandelman, P. Gandini, B. Ganie, H. Gao, R. Gao, T. Q. Gao, Y. Gao, Y. Gao, Y. Gao, M. Garau, L. M. Garcia Martin, P. Garcia Moreno, J. García Pardiñas, K. G. Garg, L. Garrido, C. Gaspar, R. E. Geertsema, L. L. Gerken, E. Gersabeck, M. Gersabeck, T. Gershon, S. Ghizzo, Z. Ghorbanimoghaddam, L. Giambastiani, F. I. Giasemis, V. Gibson, H. K. Giemza, A. L. Gilman, M. Giovannetti, A. Gioventù, L. Girardey, P. Gironella Gironell, C. Giugliano, M. A. Giza, E. L. Gkougkousis, F. C. Glaser, V. V. Gligorov, C. Göbel, E. Golobardes, D. Golubkov, A. Golutvin, S. Gomez Fernandez, F. Goncalves Abrantes, M. Goncerz, G. Gong, J. A. Gooding, I. V. Gorelov, C. Gotti, J. P. Grabowski, L. A. Granado Cardoso, E. Graugés, E. Graverini, L. Grazette, G. Graziani, A. T. Grecu, L. M. Greeven, N. A. Grieser, L. Grillo, S. Gromov, C. Gu, M. Guarise, L. Guerry, M. Guittiere, V. Guliaeva, P. A. Günther, A.-K. Guseinov, E. Gushchin, Y. Guz, T. Gys, K. Habermann, T. Hadavizadeh, C. Hadjivasiliou, G. Haefeli, C. Haen, J. Haimberger, M. Hajheidari, G. Hallett, M. M. Halvorsen, P. M. Hamilton, J. Hammerich, Q. Han, X. Han, S. Hansmann-Menzemer, L. Hao, N. Harnew, M. Hartmann, S. Hashmi, J. He, F. Hemmer, C. Henderson, R. D. L. Henderson, A. M. Hennequin, K. Hennessy, L. Henry, J. Herd, P. Herrero Gascon, J. Heuel, A. Hicheur, G. Hijano Mendizabal, D. Hill, S. E. Hollitt, J. Horswill, R. Hou, Y. Hou, N. Howarth, J. Hu, J. Hu, W. Hu, X. Hu, W. Huang, W. Hulsbergen, R. J. Hunter, M. Hushchyn, D. Hutchcroft, M. Idzik, D. Ilin, P. Ilten, A. Inglessi, A. Iniukhin, A. Ishteev, K. Ivshin, R. Jacobsson, H. Jage, S. J. Jaimes Elles, S. Jakobsen, E. Jans, B. K. Jashal, A. Jawahery, V. Jevtic, E. Jiang, X. Jiang, Y. Jiang, Y. J. Jiang, M. John, A. John Rubesh Rajan, D. Johnson, C. R. Jones, T. P. Jones, S. Joshi, B. Jost, J. Juan Castella, N. Jurik, I. Juszczak, D. Kaminaris, S. Kandybei, M. Kane, Y. Kang, C. Kar, M. Karacson, D. Karpenkov, A. Kauniskangas, J. W. Kautz, M. K. Kazanecki, F. Keizer, M. Kenzie, T. Ketel, B. Khanji, A. Kharisova, S. Kholodenko, G. Khreich, T. Kirn, V. S. Kirsebom, O. Kitouni, S. Klaver, N. Kleijne, K. Klimaszewski, M. R. Kmiec, S. Koliiev, L. Kolk, A. Konoplyannikov, P. Kopciewicz, P. Koppenburg, M. Korolev, I. Kostiuk, O. Kot, S. Kotriakhova, A. Kozachuk, P. Kravchenko, L. Kravchuk, M. Kreps, P. Krokovny, W. Krupa, W. Krzemien, O. Kshyvanskyi, S. Kubis, M. Kucharczyk, V. Kudryavtsev, E. Kulikova, A. Kupsc, B. K. Kutsenko, D. Lacarrere, P. Laguarta Gonzalez, A. Lai, A. Lampis, D. Lancierini, C. Landesa Gomez, J. J. Lane, R. Lane, G. Lanfranchi, C. Langenbruch, J. Langer, O. Lantwin, T. Latham, F. Lazzari, C. Lazzeroni, R. Le Gac, H. Lee, R. Lefèvre, A. Leflat, S. Legotin, M. Lehuraux, E. Lemos Cid, O. Leroy, T. Lesiak, E. D. Lesser, B. Leverington, A. Li, C. Li, H. Li, K. Li, L. Li, M. Li, P. Li, P.-R. Li, Q. Li, S. Li, T. Li, T. Li, Y. Li, Y. Li, Z. Lian, X. Liang, S. Libralon, C. Lin, T. Lin, R. Lindner, V. Lisovskyi, R. Litvinov, F. L. Liu, G. Liu, K. Liu, S. Liu, W. Liu, Y. Liu, Y. Liu, Y. L. Liu, A. Lobo Salvia, A. Loi, J. Lomba Castro, T. Long, J. H. Lopes, A. Lopez Huertas, S. López Soliño, Q. Lu, C. Lucarelli, D. Lucchesi, M. Lucio Martinez, V. Lukashenko, Y. Luo, A. Lupato, E. Luppi, K. Lynch, X.-R. Lyu, G. M. Ma, R. Ma, S. Maccolini, F. Machefert, F. Maciuc, B. Mack, I. Mackay, L. M. Mackey, L. R. Madhan Mohan, M. J. Madurai, A. Maevskiy, D. Magdalinski, D. Maisuzenko, M. W. Majewski, J. J. Malczewski, S. Malde, L. Malentacca, A. Malinin, T. Maltsev, G. Manca, G. Mancinelli, C. Mancuso, R. Manera Escalero, D. Manuzzi, D. Marangotto, J. F. Marchand, R. Marchevski, U. Marconi, E. Mariani, S. Mariani, C. Marin Benito, J. Marks, A. M. Marshall, L. Martel, G. Martelli, G. Martellotti, L. Martinazzoli, M. Martinelli, D. Martinez Santos, F. Martinez Vidal, A. Massafferri, R. Matev, A. Mathad, V. Matiunin, C. Matteuzzi, K. R. Mattioli, A. Mauri, E. Maurice, J. Mauricio, P. Mayencourt, J. Mazorra de Cos, M. Mazurek, M. McCann, L. Mcconnell, T. H. McGrath, N. T. McHugh, A. McNab, R. McNulty, B. Meadows, G. Meier, D. Melnychuk, F. M. Meng, M. Merk, A. Merli, L. Meyer Garcia, D. Miao, H. Miao, M. Mikhasenko, D. A. Milanes, A. Minotti, E. Minucci, T. Miralles, B. Mitreska, D. S. Mitzel, A. Modak, R. A. Mohammed, R. D. Moise, S. Mokhnenko, E. F. Molina Cardenas, T. Mombächer, M. Monk, S. Monteil, A. Morcillo Gomez, G. Morello, M. J. Morello, M. P. Morgenthaler, J. Moron, A. B. Morris, A. G. Morris, R. Mountain, H. Mu, Z. M. Mu, E. Muhammad, F. Muheim, M. Mulder, K. Müller, F. Muñoz-Rojas, R. Murta, P. Naik, T. Nakada, R. Nandakumar, T. Nanut, I. Nasteva, M. Needham, N. Neri, S. Neubert, N. Neufeld, P. Neustroev, J. Nicolini, D. Nicotra, E. M. Niel, N. Nikitin, Q. Niu, P. Nogarolli, P. Nogga, C. Normand, J. Novoa Fernandez, G. Nowak, C. Nunez, H. N. Nur, A. Oblakowska-Mucha, V. Obraztsov, T. Oeser, S. Okamura, A. Okhotnikov, O. Okhrimenko, R. Oldeman, F. Oliva, M. Olocco, C. J. G. Onderwater, R. H. O’Neil, D. Osthues, J. M. Otalora Goicochea, P. Owen, A. Oyanguren, O. Ozcelik, F. Paciolla, A. Padee, K. O. Padeken, B. Pagare, P. R. Pais, T. Pajero, A. Palano, M. Palutan, G. Panshin, L. Paolucci, A. Papanestis, M. Pappagallo, L. L. Pappalardo, C. Pappenheimer, C. Parkes, B. Passalacqua, G. Passaleva, D. Passaro, A. Pastore, M. Patel, J. Patoc, C. Patrignani, A. Paul, C. J. Pawley, A. Pellegrino, J. Peng, M. Pepe Altarelli, S. Perazzini, D. Pereima, H. Pereira Da Costa, A. Pereiro Castro, P. Perret, A. Perro, K. Petridis, A. Petrolini, J. P. Pfaller, H. Pham, L. Pica, M. Piccini, L. Piccolo, B. Pietrzyk, G. Pietrzyk, D. Pinci, F. Pisani, M. Pizzichemi, V. Placinta, M. Plo Casasus, T. Poeschl, F. Polci, M. Poli Lener, A. Poluektov, N. Polukhina, I. Polyakov, E. Polycarpo, S. Ponce, D. Popov, S. Poslavskii, K. Prasanth, C. Prouve, D. Provenzano, V. Pugatch, G. Punzi, S. Qasim, Q. Q. Qian, W. Qian, N. Qin, S. Qu, R. Quagliani, R. I. Rabadan Trejo, J. H. Rademacker, M. Rama, M. Ramírez García, V. Ramos De Oliveira, M. Ramos Pernas, M. S. Rangel, F. Ratnikov, G. Raven, M. Rebollo De Miguel, F. Redi, J. Reich, F. Reiss, Z. Ren, P. K. Resmi, R. Ribatti, G. R. Ricart, D. Riccardi, S. Ricciardi, K. Richardson, M. Richardson-Slipper, K. Rinnert, P. Robbe, G. Robertson, E. Rodrigues, E. Rodriguez Fernandez, J. A. Rodriguez Lopez, E. Rodriguez Rodriguez, J. Roensch, A. Rogachev, A. Rogovskiy, D. L. Rolf, P. Roloff, V. Romanovskiy, M. Romero Lamas, A. Romero Vidal, G. Romolini, F. Ronchetti, T. Rong, M. Rotondo, S. R. Roy, M. S. Rudolph, M. Ruiz Diaz, R. A. Ruiz Fernandez, J. Ruiz Vidal, A. Ryzhikov, J. Ryzka, J. J. Saavedra-Arias, J. J. Saborido Silva, R. Sadek, N. Sagidova, D. Sahoo, N. Sahoo, B. Saitta, M. Salomoni, I. Sanderswood, R. Santacesaria, C. Santamarina Rios, M. Santimaria, L. Santoro, E. Santovetti, A. Saputi, D. Saranin, A. Sarnatskiy, G. Sarpis, M. Sarpis, C. Satriano, A. Satta, M. Saur, D. Savrina, H. Sazak, F. Sborzacchi, L. G. Scantlebury Smead, A. Scarabotto, S. Schael, S. Scherl, M. Schiller, H. Schindler, M. Schmelling, B. Schmidt, S. Schmitt, H. Schmitz, O. Schneider, A. Schopper, N. Schulte, S. Schulte, M. H. Schune, R. Schwemmer, G. Schwering, B. Sciascia, A. Sciuccati, S. Sellam, A. Semennikov, T. Senger, M. Senghi Soares, A. Sergi, N. Serra, L. Sestini, A. Seuthe, Y. Shang, D. M. Shangase, M. Shapkin, R. S. Sharma, I. Shchemerov, L. Shchutska, T. Shears, L. Shekhtman, Z. Shen, S. Sheng, V. Shevchenko, B. Shi, Q. Shi, Y. Shimizu, E. Shmanin, R. Shorkin, J. D. Shupperd, R. Silva Coutinho, G. Simi, S. Simone, N. Skidmore, T. Skwarnicki, M. W. Slater, J. C. Smallwood, E. Smith, K. Smith, M. Smith, A. Snoch, L. Soares Lavra, M. D. Sokoloff, F. J. P. Soler, A. Solomin, A. Solovev, I. Solovyev, R. Song, Y. Song, Y. Song, Y. S. Song, F. L. Souza De Almeida, B. Souza De Paula, E. Spadaro Norella, E. Spedicato, J. G. Speer, E. Spiridenkov, P. Spradlin, V. Sriskaran, F. Stagni, M. Stahl, S. Stahl, S. Stanislaus, E. N. Stein, O. Steinkamp, O. Stenyakin, H. Stevens, D. Strekalina, Y. Su, F. Suljik, J. Sun, L. Sun, Y. Sun, D. Sundfeld, W. Sutcliffe, P. N. Swallow, K. Swientek, F. Swystun, A. Szabelski, T. Szumlak, Y. Tan, M. D. Tat, A. Terentev, F. Terzuoli, F. Teubert, E. Thomas, D. J. D. Thompson, H. Tilquin, V. Tisserand, S. T’Jampens, M. Tobin, L. Tomassetti, G. Tonani, X. Tong, D. Torres Machado, L. Toscano, D. Y. Tou, C. Trippl, G. Tuci, N. Tuning, L. H. Uecker, A. Ukleja, D. J. Unverzagt, E. Ursov, A. Usachov, A. Ustyuzhanin, U. Uwer, V. Vagnoni, V. Valcarce Cadenas, G. Valenti, N. Valls Canudas, H. Van Hecke, E. van Herwijnen, C. B. Van Hulse, R. Van Laak, M. van Veghel, G. Vasquez, R. Vazquez Gomez, P. Vazquez Regueiro, C. Vázquez Sierra, S. Vecchi, J. J. Velthuis, M. Veltri, A. Venkateswaran, M. Verdoglia, M. Vesterinen, D. Vico Benet, P. Vidrier Villalba, M. Vieites Diaz, X. Vilasis-Cardona, E. Vilella Figueras, A. Villa, P. Vincent, F. C. Volle, D. vom Bruch, N. Voropaev, K. Vos, G. Vouters, C. Vrahas, J. Wagner, J. Walsh, E. J. Walton, G. Wan, C. Wang, G. Wang, H. Wang, J. Wang, J. Wang, J. Wang, J. Wang, M. Wang, N. W. Wang, R. Wang, X. Wang, X. Wang, X. W. Wang, Y. Wang, Y. W. Wang, Z. Wang, Z. Wang, Z. Wang, J. A. Ward, M. Waterlaat, N. K. Watson, D. Websdale, Y. Wei, J. Wendel, B. D. C. Westhenry, C. White, M. Whitehead, E. Whiter, A. R. Wiederhold, D. Wiedner, G. Wilkinson, M. K. Wilkinson, M. Williams, M. R. J. Williams, R. Williams, Z. Williams, F. F. Wilson, M. Winn, W. Wislicki, M. Witek, L. Witola, G. Wormser, S. A. Wotton, H. Wu, J. Wu, Y. Wu, Z. Wu, K. Wyllie, S. Xian, Z. Xiang, Y. Xie, A. Xu, J. Xu, L. Xu, L. Xu, M. Xu, Z. Xu, Z. Xu, Z. Xu, D. Yang, K. Yang, S. Yang, X. Yang, Y. Yang, Z. Yang, Z. Yang, V. Yeroshenko, H. Yeung, H. Yin, X. Yin, C. Y. Yu, J. Yu, X. Yuan, Y. Yuan, E. Zaffaroni, M. Zavertyaev, M. Zdybal, F. Zenesini, C. Zeng, M. Zeng, C. Zhang, D. Zhang, J. Zhang, L. Zhang, S. Zhang, S. Zhang, Y. Zhang, Y. Z. Zhang, Y. Zhao, A. Zharkova, A. Zhelezov, S. Z. Zheng, X. Z. Zheng, Y. Zheng, T. Zhou, X. Zhou, Y. Zhou, V. Zhovkovska, L. Z. Zhu, X. Zhu, X. Zhu, V. Zhukov, J. Zhuo, Q. Zou, D. Zuliani, G. Zunica

A time-dependent, flavour-tagged measurement of CP violation is performed with B0 → D+D and ( {B}_s^0 ) ( {D}_s^{+}{D}_s^{-} ) decays, using data collected by the LHCb detector in proton-proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 6 fb1. In B0 → D+D decays the CP-violation parameters are measured to be

In ( {B}_s^0 ) ( {D}_s^{+}{D}_s^{-} ) decays the CP-violating parameter formulation in terms of ϕs and |λ| results in

These results represent the most precise single measurement of the CP-violation parameters in their respective channels. For the first time in a single measurement, CP symmetry is observed to be violated in B0 → D+D decays with a significance exceeding six standard deviations.

{"title":"Measurement of CP violation in B0 → D+D− and ( {textrm{B}}_{textrm{s}}^0 ) → ( {textrm{D}}_{textrm{s}}^{+}{textrm{D}}_{textrm{s}}^{-} ) decays","authors":"The LHCb collaboration,&nbsp;R. Aaij,&nbsp;A. S. W. Abdelmotteleb,&nbsp;C. Abellan Beteta,&nbsp;F. Abudinén,&nbsp;T. Ackernley,&nbsp;A. A. Adefisoye,&nbsp;B. Adeva,&nbsp;M. Adinolfi,&nbsp;P. Adlarson,&nbsp;C. Agapopoulou,&nbsp;C. A. Aidala,&nbsp;Z. Ajaltouni,&nbsp;S. Akar,&nbsp;K. Akiba,&nbsp;P. Albicocco,&nbsp;J. Albrecht,&nbsp;F. Alessio,&nbsp;M. Alexander,&nbsp;Z. Aliouche,&nbsp;P. Alvarez Cartelle,&nbsp;R. Amalric,&nbsp;S. Amato,&nbsp;J. L. Amey,&nbsp;Y. Amhis,&nbsp;L. An,&nbsp;L. Anderlini,&nbsp;M. Andersson,&nbsp;A. Andreianov,&nbsp;P. Andreola,&nbsp;M. Andreotti,&nbsp;D. Andreou,&nbsp;A. Anelli,&nbsp;D. Ao,&nbsp;F. Archilli,&nbsp;M. Argenton,&nbsp;S. Arguedas Cuendis,&nbsp;A. Artamonov,&nbsp;M. Artuso,&nbsp;E. Aslanides,&nbsp;R. Ataíde Da Silva,&nbsp;M. Atzeni,&nbsp;B. Audurier,&nbsp;D. Bacher,&nbsp;I. Bachiller Perea,&nbsp;S. Bachmann,&nbsp;M. Bachmayer,&nbsp;J. J. Back,&nbsp;P. Baladron Rodriguez,&nbsp;V. Balagura,&nbsp;W. Baldini,&nbsp;L. Balzani,&nbsp;H. Bao,&nbsp;J. Baptista de Souza Leite,&nbsp;C. Barbero Pretel,&nbsp;M. Barbetti,&nbsp;I. R. Barbosa,&nbsp;R. J. Barlow,&nbsp;M. Barnyakov,&nbsp;S. Barsuk,&nbsp;W. Barter,&nbsp;M. Bartolini,&nbsp;J. Bartz,&nbsp;J. M. Basels,&nbsp;S. Bashir,&nbsp;G. Bassi,&nbsp;B. Batsukh,&nbsp;P. B. Battista,&nbsp;A. Bay,&nbsp;A. Beck,&nbsp;M. Becker,&nbsp;F. Bedeschi,&nbsp;I. B. Bediaga,&nbsp;N. A. Behling,&nbsp;S. Belin,&nbsp;V. Bellee,&nbsp;K. Belous,&nbsp;I. Belov,&nbsp;I. Belyaev,&nbsp;G. Benane,&nbsp;G. Bencivenni,&nbsp;E. Ben-Haim,&nbsp;A. Berezhnoy,&nbsp;R. Bernet,&nbsp;S. Bernet Andres,&nbsp;A. Bertolin,&nbsp;C. Betancourt,&nbsp;F. Betti,&nbsp;J. Bex,&nbsp;Ia. Bezshyiko,&nbsp;J. Bhom,&nbsp;M. S. Bieker,&nbsp;N. V. Biesuz,&nbsp;P. Billoir,&nbsp;A. Biolchini,&nbsp;M. Birch,&nbsp;F. C. R. Bishop,&nbsp;A. Bitadze,&nbsp;A. Bizzeti,&nbsp;T. Blake,&nbsp;F. Blanc,&nbsp;J. E. Blank,&nbsp;S. Blusk,&nbsp;V. Bocharnikov,&nbsp;J. A. Boelhauve,&nbsp;O. Boente Garcia,&nbsp;T. Boettcher,&nbsp;A. Bohare,&nbsp;A. Boldyrev,&nbsp;C. S. Bolognani,&nbsp;R. Bolzonella,&nbsp;N. Bondar,&nbsp;A. Bordelius,&nbsp;F. Borgato,&nbsp;S. Borghi,&nbsp;M. Borsato,&nbsp;J. T. Borsuk,&nbsp;S. A. Bouchiba,&nbsp;M. Bovill,&nbsp;T. J. V. Bowcock,&nbsp;A. Boyer,&nbsp;C. Bozzi,&nbsp;A. Brea Rodriguez,&nbsp;N. Breer,&nbsp;J. Brodzicka,&nbsp;A. Brossa Gonzalo,&nbsp;J. Brown,&nbsp;D. Brundu,&nbsp;E. Buchanan,&nbsp;A. Buonaura,&nbsp;L. Buonincontri,&nbsp;A. T. Burke,&nbsp;C. Burr,&nbsp;J. S. Butter,&nbsp;J. Buytaert,&nbsp;W. Byczynski,&nbsp;S. Cadeddu,&nbsp;H. Cai,&nbsp;A. C. Caillet,&nbsp;R. Calabrese,&nbsp;S. Calderon Ramirez,&nbsp;L. Calefice,&nbsp;S. Cali,&nbsp;M. Calvi,&nbsp;M. Calvo Gomez,&nbsp;P. Camargo Magalhaes,&nbsp;J. I. Cambon Bouzas,&nbsp;P. Campana,&nbsp;D. H. Campora Perez,&nbsp;A. F. Campoverde Quezada,&nbsp;S. Capelli,&nbsp;L. Capriotti,&nbsp;R. Caravaca-Mora,&nbsp;A. Carbone,&nbsp;L. Carcedo Salgado,&nbsp;R. Cardinale,&nbsp;A. Cardini,&nbsp;P. Carniti,&nbsp;L. Carus,&nbsp;A. Casais Vidal,&nbsp;R. Caspary,&nbsp;G. Casse,&nbsp;J. Castro Godinez,&nbsp;M. Cattaneo,&nbsp;G. Cavallero,&nbsp;V. Cavallini,&nbsp;S. Celani,&nbsp;D. Cervenkov,&nbsp;S. Cesare,&nbsp;A. J. Chadwick,&nbsp;I. Chahrour,&nbsp;M. Charles,&nbsp;Ph. Charpentier,&nbsp;E. Chatzianagnostou,&nbsp;M. Chefdeville,&nbsp;C. Chen,&nbsp;S. Chen,&nbsp;Z. Chen,&nbsp;A. Chernov,&nbsp;S. Chernyshenko,&nbsp;X. Chiotopoulos,&nbsp;V. Chobanova,&nbsp;S. Cholak,&nbsp;M. Chrzaszcz,&nbsp;A. Chubykin,&nbsp;V. Chulikov,&nbsp;P. Ciambrone,&nbsp;X. Cid Vidal,&nbsp;G. Ciezarek,&nbsp;P. Cifra,&nbsp;P. E. L. Clarke,&nbsp;M. Clemencic,&nbsp;H. V. Cliff,&nbsp;J. Closier,&nbsp;C. Cocha Toapaxi,&nbsp;V. Coco,&nbsp;J. Cogan,&nbsp;E. Cogneras,&nbsp;L. Cojocariu,&nbsp;P. Collins,&nbsp;T. Colombo,&nbsp;M. Colonna,&nbsp;A. Comerma-Montells,&nbsp;L. Congedo,&nbsp;A. Contu,&nbsp;N. Cooke,&nbsp;I. Corredoira,&nbsp;A. Correia,&nbsp;G. Corti,&nbsp;J. Cottee Meldrum,&nbsp;B. Couturier,&nbsp;D. C. Craik,&nbsp;M. Cruz Torres,&nbsp;E. Curras Rivera,&nbsp;R. Currie,&nbsp;C. L. Da Silva,&nbsp;S. Dadabaev,&nbsp;L. Dai,&nbsp;X. Dai,&nbsp;E. Dall’Occo,&nbsp;J. Dalseno,&nbsp;C. D’Ambrosio,&nbsp;J. Daniel,&nbsp;A. Danilina,&nbsp;P. d’Argent,&nbsp;A. Davidson,&nbsp;J. E. Davies,&nbsp;A. Davis,&nbsp;O. De Aguiar Francisco,&nbsp;C. De Angelis,&nbsp;F. De Benedetti,&nbsp;J. de Boer,&nbsp;K. De Bruyn,&nbsp;S. De Capua,&nbsp;M. De Cian,&nbsp;U. De Freitas Carneiro Da Graca,&nbsp;E. De Lucia,&nbsp;J. M. De Miranda,&nbsp;L. De Paula,&nbsp;M. De Serio,&nbsp;P. De Simone,&nbsp;F. De Vellis,&nbsp;J. A. de Vries,&nbsp;F. Debernardis,&nbsp;D. Decamp,&nbsp;V. Dedu,&nbsp;S. Dekkers,&nbsp;L. Del Buono,&nbsp;B. Delaney,&nbsp;H.-P. Dembinski,&nbsp;J. Deng,&nbsp;V. Denysenko,&nbsp;O. Deschamps,&nbsp;F. Dettori,&nbsp;B. Dey,&nbsp;P. Di Nezza,&nbsp;I. Diachkov,&nbsp;S. Didenko,&nbsp;S. Ding,&nbsp;L. Dittmann,&nbsp;V. Dobishuk,&nbsp;A. D. Docheva,&nbsp;C. Dong,&nbsp;A. M. Donohoe,&nbsp;F. Dordei,&nbsp;A. C. dos Reis,&nbsp;A. D. Dowling,&nbsp;W. Duan,&nbsp;P. Duda,&nbsp;M. W. Dudek,&nbsp;L. Dufour,&nbsp;V. Duk,&nbsp;P. Durante,&nbsp;M. M. Duras,&nbsp;J. M. Durham,&nbsp;O. D. Durmus,&nbsp;A. Dziurda,&nbsp;A. Dzyuba,&nbsp;S. Easo,&nbsp;E. Eckstein,&nbsp;U. Egede,&nbsp;A. Egorychev,&nbsp;V. Egorychev,&nbsp;S. Eisenhardt,&nbsp;E. Ejopu,&nbsp;L. Eklund,&nbsp;M. Elashri,&nbsp;J. Ellbracht,&nbsp;S. Ely,&nbsp;A. Ene,&nbsp;E. Epple,&nbsp;J. Eschle,&nbsp;S. Esen,&nbsp;T. Evans,&nbsp;F. Fabiano,&nbsp;L. N. Falcao,&nbsp;Y. Fan,&nbsp;B. Fang,&nbsp;L. Fantini,&nbsp;M. Faria,&nbsp;K. Farmer,&nbsp;D. Fazzini,&nbsp;L. Felkowski,&nbsp;M. Feng,&nbsp;M. Feo,&nbsp;A. Fernandez Casani,&nbsp;M. Fernandez Gomez,&nbsp;A. D. Fernez,&nbsp;F. Ferrari,&nbsp;F. Ferreira Rodrigues,&nbsp;M. Ferrillo,&nbsp;M. Ferro-Luzzi,&nbsp;S. Filippov,&nbsp;R. A. Fini,&nbsp;M. Fiorini,&nbsp;M. Firlej,&nbsp;K. L. Fischer,&nbsp;D. S. Fitzgerald,&nbsp;C. Fitzpatrick,&nbsp;T. Fiutowski,&nbsp;F. Fleuret,&nbsp;M. Fontana,&nbsp;L. F. Foreman,&nbsp;R. Forty,&nbsp;D. Foulds-Holt,&nbsp;V. Franco Lima,&nbsp;M. Franco Sevilla,&nbsp;M. Frank,&nbsp;E. Franzoso,&nbsp;G. Frau,&nbsp;C. Frei,&nbsp;D. A. Friday,&nbsp;J. Fu,&nbsp;Q. Führing,&nbsp;Y. Fujii,&nbsp;T. Fulghesu,&nbsp;E. Gabriel,&nbsp;G. Galati,&nbsp;M. D. Galati,&nbsp;A. Gallas Torreira,&nbsp;D. Galli,&nbsp;S. Gambetta,&nbsp;M. Gandelman,&nbsp;P. Gandini,&nbsp;B. Ganie,&nbsp;H. Gao,&nbsp;R. Gao,&nbsp;T. Q. Gao,&nbsp;Y. Gao,&nbsp;Y. Gao,&nbsp;Y. Gao,&nbsp;M. Garau,&nbsp;L. M. Garcia Martin,&nbsp;P. Garcia Moreno,&nbsp;J. García Pardiñas,&nbsp;K. G. Garg,&nbsp;L. Garrido,&nbsp;C. Gaspar,&nbsp;R. E. Geertsema,&nbsp;L. L. Gerken,&nbsp;E. Gersabeck,&nbsp;M. Gersabeck,&nbsp;T. Gershon,&nbsp;S. Ghizzo,&nbsp;Z. Ghorbanimoghaddam,&nbsp;L. Giambastiani,&nbsp;F. I. Giasemis,&nbsp;V. Gibson,&nbsp;H. K. Giemza,&nbsp;A. L. Gilman,&nbsp;M. Giovannetti,&nbsp;A. Gioventù,&nbsp;L. Girardey,&nbsp;P. Gironella Gironell,&nbsp;C. Giugliano,&nbsp;M. A. Giza,&nbsp;E. L. Gkougkousis,&nbsp;F. C. Glaser,&nbsp;V. V. Gligorov,&nbsp;C. Göbel,&nbsp;E. Golobardes,&nbsp;D. Golubkov,&nbsp;A. Golutvin,&nbsp;S. Gomez Fernandez,&nbsp;F. Goncalves Abrantes,&nbsp;M. Goncerz,&nbsp;G. Gong,&nbsp;J. A. Gooding,&nbsp;I. V. Gorelov,&nbsp;C. Gotti,&nbsp;J. P. Grabowski,&nbsp;L. A. Granado Cardoso,&nbsp;E. Graugés,&nbsp;E. Graverini,&nbsp;L. Grazette,&nbsp;G. Graziani,&nbsp;A. T. Grecu,&nbsp;L. M. Greeven,&nbsp;N. A. Grieser,&nbsp;L. Grillo,&nbsp;S. Gromov,&nbsp;C. Gu,&nbsp;M. Guarise,&nbsp;L. Guerry,&nbsp;M. Guittiere,&nbsp;V. Guliaeva,&nbsp;P. A. Günther,&nbsp;A.-K. Guseinov,&nbsp;E. Gushchin,&nbsp;Y. Guz,&nbsp;T. Gys,&nbsp;K. Habermann,&nbsp;T. Hadavizadeh,&nbsp;C. Hadjivasiliou,&nbsp;G. Haefeli,&nbsp;C. Haen,&nbsp;J. Haimberger,&nbsp;M. Hajheidari,&nbsp;G. Hallett,&nbsp;M. M. Halvorsen,&nbsp;P. M. Hamilton,&nbsp;J. Hammerich,&nbsp;Q. Han,&nbsp;X. Han,&nbsp;S. Hansmann-Menzemer,&nbsp;L. Hao,&nbsp;N. Harnew,&nbsp;M. Hartmann,&nbsp;S. Hashmi,&nbsp;J. He,&nbsp;F. Hemmer,&nbsp;C. Henderson,&nbsp;R. D. L. Henderson,&nbsp;A. M. Hennequin,&nbsp;K. Hennessy,&nbsp;L. Henry,&nbsp;J. Herd,&nbsp;P. Herrero Gascon,&nbsp;J. Heuel,&nbsp;A. Hicheur,&nbsp;G. Hijano Mendizabal,&nbsp;D. Hill,&nbsp;S. E. Hollitt,&nbsp;J. Horswill,&nbsp;R. Hou,&nbsp;Y. Hou,&nbsp;N. Howarth,&nbsp;J. Hu,&nbsp;J. Hu,&nbsp;W. Hu,&nbsp;X. Hu,&nbsp;W. Huang,&nbsp;W. Hulsbergen,&nbsp;R. J. Hunter,&nbsp;M. Hushchyn,&nbsp;D. Hutchcroft,&nbsp;M. Idzik,&nbsp;D. Ilin,&nbsp;P. Ilten,&nbsp;A. Inglessi,&nbsp;A. Iniukhin,&nbsp;A. Ishteev,&nbsp;K. Ivshin,&nbsp;R. Jacobsson,&nbsp;H. Jage,&nbsp;S. J. Jaimes Elles,&nbsp;S. Jakobsen,&nbsp;E. Jans,&nbsp;B. K. Jashal,&nbsp;A. Jawahery,&nbsp;V. Jevtic,&nbsp;E. Jiang,&nbsp;X. Jiang,&nbsp;Y. Jiang,&nbsp;Y. J. Jiang,&nbsp;M. John,&nbsp;A. John Rubesh Rajan,&nbsp;D. Johnson,&nbsp;C. R. Jones,&nbsp;T. P. Jones,&nbsp;S. Joshi,&nbsp;B. Jost,&nbsp;J. Juan Castella,&nbsp;N. Jurik,&nbsp;I. Juszczak,&nbsp;D. Kaminaris,&nbsp;S. Kandybei,&nbsp;M. Kane,&nbsp;Y. Kang,&nbsp;C. Kar,&nbsp;M. Karacson,&nbsp;D. Karpenkov,&nbsp;A. Kauniskangas,&nbsp;J. W. Kautz,&nbsp;M. K. Kazanecki,&nbsp;F. Keizer,&nbsp;M. Kenzie,&nbsp;T. Ketel,&nbsp;B. Khanji,&nbsp;A. Kharisova,&nbsp;S. Kholodenko,&nbsp;G. Khreich,&nbsp;T. Kirn,&nbsp;V. S. Kirsebom,&nbsp;O. Kitouni,&nbsp;S. Klaver,&nbsp;N. Kleijne,&nbsp;K. Klimaszewski,&nbsp;M. R. Kmiec,&nbsp;S. Koliiev,&nbsp;L. Kolk,&nbsp;A. Konoplyannikov,&nbsp;P. Kopciewicz,&nbsp;P. Koppenburg,&nbsp;M. Korolev,&nbsp;I. Kostiuk,&nbsp;O. Kot,&nbsp;S. Kotriakhova,&nbsp;A. Kozachuk,&nbsp;P. Kravchenko,&nbsp;L. Kravchuk,&nbsp;M. Kreps,&nbsp;P. Krokovny,&nbsp;W. Krupa,&nbsp;W. Krzemien,&nbsp;O. Kshyvanskyi,&nbsp;S. Kubis,&nbsp;M. Kucharczyk,&nbsp;V. Kudryavtsev,&nbsp;E. Kulikova,&nbsp;A. Kupsc,&nbsp;B. K. Kutsenko,&nbsp;D. Lacarrere,&nbsp;P. Laguarta Gonzalez,&nbsp;A. Lai,&nbsp;A. Lampis,&nbsp;D. Lancierini,&nbsp;C. Landesa Gomez,&nbsp;J. J. Lane,&nbsp;R. Lane,&nbsp;G. Lanfranchi,&nbsp;C. Langenbruch,&nbsp;J. Langer,&nbsp;O. Lantwin,&nbsp;T. Latham,&nbsp;F. Lazzari,&nbsp;C. Lazzeroni,&nbsp;R. Le Gac,&nbsp;H. Lee,&nbsp;R. Lefèvre,&nbsp;A. Leflat,&nbsp;S. Legotin,&nbsp;M. Lehuraux,&nbsp;E. Lemos Cid,&nbsp;O. Leroy,&nbsp;T. Lesiak,&nbsp;E. D. Lesser,&nbsp;B. Leverington,&nbsp;A. Li,&nbsp;C. Li,&nbsp;H. Li,&nbsp;K. Li,&nbsp;L. Li,&nbsp;M. Li,&nbsp;P. Li,&nbsp;P.-R. Li,&nbsp;Q. Li,&nbsp;S. Li,&nbsp;T. Li,&nbsp;T. Li,&nbsp;Y. Li,&nbsp;Y. Li,&nbsp;Z. Lian,&nbsp;X. Liang,&nbsp;S. Libralon,&nbsp;C. Lin,&nbsp;T. Lin,&nbsp;R. Lindner,&nbsp;V. Lisovskyi,&nbsp;R. Litvinov,&nbsp;F. L. Liu,&nbsp;G. Liu,&nbsp;K. Liu,&nbsp;S. Liu,&nbsp;W. Liu,&nbsp;Y. Liu,&nbsp;Y. Liu,&nbsp;Y. L. Liu,&nbsp;A. Lobo Salvia,&nbsp;A. Loi,&nbsp;J. Lomba Castro,&nbsp;T. Long,&nbsp;J. H. Lopes,&nbsp;A. Lopez Huertas,&nbsp;S. López Soliño,&nbsp;Q. Lu,&nbsp;C. Lucarelli,&nbsp;D. Lucchesi,&nbsp;M. Lucio Martinez,&nbsp;V. Lukashenko,&nbsp;Y. Luo,&nbsp;A. Lupato,&nbsp;E. Luppi,&nbsp;K. Lynch,&nbsp;X.-R. Lyu,&nbsp;G. M. Ma,&nbsp;R. Ma,&nbsp;S. Maccolini,&nbsp;F. Machefert,&nbsp;F. Maciuc,&nbsp;B. Mack,&nbsp;I. Mackay,&nbsp;L. M. Mackey,&nbsp;L. R. Madhan Mohan,&nbsp;M. J. Madurai,&nbsp;A. Maevskiy,&nbsp;D. Magdalinski,&nbsp;D. Maisuzenko,&nbsp;M. W. Majewski,&nbsp;J. J. Malczewski,&nbsp;S. Malde,&nbsp;L. Malentacca,&nbsp;A. Malinin,&nbsp;T. Maltsev,&nbsp;G. Manca,&nbsp;G. Mancinelli,&nbsp;C. Mancuso,&nbsp;R. Manera Escalero,&nbsp;D. Manuzzi,&nbsp;D. Marangotto,&nbsp;J. F. Marchand,&nbsp;R. Marchevski,&nbsp;U. Marconi,&nbsp;E. Mariani,&nbsp;S. Mariani,&nbsp;C. Marin Benito,&nbsp;J. Marks,&nbsp;A. M. Marshall,&nbsp;L. Martel,&nbsp;G. Martelli,&nbsp;G. Martellotti,&nbsp;L. Martinazzoli,&nbsp;M. Martinelli,&nbsp;D. Martinez Santos,&nbsp;F. Martinez Vidal,&nbsp;A. Massafferri,&nbsp;R. Matev,&nbsp;A. Mathad,&nbsp;V. Matiunin,&nbsp;C. Matteuzzi,&nbsp;K. R. Mattioli,&nbsp;A. Mauri,&nbsp;E. Maurice,&nbsp;J. Mauricio,&nbsp;P. Mayencourt,&nbsp;J. Mazorra de Cos,&nbsp;M. Mazurek,&nbsp;M. McCann,&nbsp;L. Mcconnell,&nbsp;T. H. McGrath,&nbsp;N. T. McHugh,&nbsp;A. McNab,&nbsp;R. McNulty,&nbsp;B. Meadows,&nbsp;G. Meier,&nbsp;D. Melnychuk,&nbsp;F. M. Meng,&nbsp;M. Merk,&nbsp;A. Merli,&nbsp;L. Meyer Garcia,&nbsp;D. Miao,&nbsp;H. Miao,&nbsp;M. Mikhasenko,&nbsp;D. A. Milanes,&nbsp;A. Minotti,&nbsp;E. Minucci,&nbsp;T. Miralles,&nbsp;B. Mitreska,&nbsp;D. S. Mitzel,&nbsp;A. Modak,&nbsp;R. A. Mohammed,&nbsp;R. D. Moise,&nbsp;S. Mokhnenko,&nbsp;E. F. Molina Cardenas,&nbsp;T. Mombächer,&nbsp;M. Monk,&nbsp;S. Monteil,&nbsp;A. Morcillo Gomez,&nbsp;G. Morello,&nbsp;M. J. Morello,&nbsp;M. P. Morgenthaler,&nbsp;J. Moron,&nbsp;A. B. Morris,&nbsp;A. G. Morris,&nbsp;R. Mountain,&nbsp;H. Mu,&nbsp;Z. M. Mu,&nbsp;E. Muhammad,&nbsp;F. Muheim,&nbsp;M. Mulder,&nbsp;K. Müller,&nbsp;F. Muñoz-Rojas,&nbsp;R. Murta,&nbsp;P. Naik,&nbsp;T. Nakada,&nbsp;R. Nandakumar,&nbsp;T. Nanut,&nbsp;I. Nasteva,&nbsp;M. Needham,&nbsp;N. Neri,&nbsp;S. Neubert,&nbsp;N. Neufeld,&nbsp;P. Neustroev,&nbsp;J. Nicolini,&nbsp;D. Nicotra,&nbsp;E. M. Niel,&nbsp;N. Nikitin,&nbsp;Q. Niu,&nbsp;P. Nogarolli,&nbsp;P. Nogga,&nbsp;C. Normand,&nbsp;J. Novoa Fernandez,&nbsp;G. Nowak,&nbsp;C. Nunez,&nbsp;H. N. Nur,&nbsp;A. Oblakowska-Mucha,&nbsp;V. Obraztsov,&nbsp;T. Oeser,&nbsp;S. Okamura,&nbsp;A. Okhotnikov,&nbsp;O. Okhrimenko,&nbsp;R. Oldeman,&nbsp;F. Oliva,&nbsp;M. Olocco,&nbsp;C. J. G. Onderwater,&nbsp;R. H. O’Neil,&nbsp;D. Osthues,&nbsp;J. M. Otalora Goicochea,&nbsp;P. Owen,&nbsp;A. Oyanguren,&nbsp;O. Ozcelik,&nbsp;F. Paciolla,&nbsp;A. Padee,&nbsp;K. O. Padeken,&nbsp;B. Pagare,&nbsp;P. R. Pais,&nbsp;T. Pajero,&nbsp;A. Palano,&nbsp;M. Palutan,&nbsp;G. Panshin,&nbsp;L. Paolucci,&nbsp;A. Papanestis,&nbsp;M. Pappagallo,&nbsp;L. L. Pappalardo,&nbsp;C. Pappenheimer,&nbsp;C. Parkes,&nbsp;B. Passalacqua,&nbsp;G. Passaleva,&nbsp;D. Passaro,&nbsp;A. Pastore,&nbsp;M. Patel,&nbsp;J. Patoc,&nbsp;C. Patrignani,&nbsp;A. Paul,&nbsp;C. J. Pawley,&nbsp;A. Pellegrino,&nbsp;J. Peng,&nbsp;M. Pepe Altarelli,&nbsp;S. Perazzini,&nbsp;D. Pereima,&nbsp;H. Pereira Da Costa,&nbsp;A. Pereiro Castro,&nbsp;P. Perret,&nbsp;A. Perro,&nbsp;K. Petridis,&nbsp;A. Petrolini,&nbsp;J. P. Pfaller,&nbsp;H. Pham,&nbsp;L. Pica,&nbsp;M. Piccini,&nbsp;L. Piccolo,&nbsp;B. Pietrzyk,&nbsp;G. Pietrzyk,&nbsp;D. Pinci,&nbsp;F. Pisani,&nbsp;M. Pizzichemi,&nbsp;V. Placinta,&nbsp;M. Plo Casasus,&nbsp;T. Poeschl,&nbsp;F. Polci,&nbsp;M. Poli Lener,&nbsp;A. Poluektov,&nbsp;N. Polukhina,&nbsp;I. Polyakov,&nbsp;E. Polycarpo,&nbsp;S. Ponce,&nbsp;D. Popov,&nbsp;S. Poslavskii,&nbsp;K. Prasanth,&nbsp;C. Prouve,&nbsp;D. Provenzano,&nbsp;V. Pugatch,&nbsp;G. Punzi,&nbsp;S. Qasim,&nbsp;Q. Q. Qian,&nbsp;W. Qian,&nbsp;N. Qin,&nbsp;S. Qu,&nbsp;R. Quagliani,&nbsp;R. I. Rabadan Trejo,&nbsp;J. H. Rademacker,&nbsp;M. Rama,&nbsp;M. Ramírez García,&nbsp;V. Ramos De Oliveira,&nbsp;M. Ramos Pernas,&nbsp;M. S. Rangel,&nbsp;F. Ratnikov,&nbsp;G. Raven,&nbsp;M. Rebollo De Miguel,&nbsp;F. Redi,&nbsp;J. Reich,&nbsp;F. Reiss,&nbsp;Z. Ren,&nbsp;P. K. Resmi,&nbsp;R. Ribatti,&nbsp;G. R. Ricart,&nbsp;D. Riccardi,&nbsp;S. Ricciardi,&nbsp;K. Richardson,&nbsp;M. Richardson-Slipper,&nbsp;K. Rinnert,&nbsp;P. Robbe,&nbsp;G. Robertson,&nbsp;E. Rodrigues,&nbsp;E. Rodriguez Fernandez,&nbsp;J. A. Rodriguez Lopez,&nbsp;E. Rodriguez Rodriguez,&nbsp;J. Roensch,&nbsp;A. Rogachev,&nbsp;A. Rogovskiy,&nbsp;D. L. Rolf,&nbsp;P. Roloff,&nbsp;V. Romanovskiy,&nbsp;M. Romero Lamas,&nbsp;A. Romero Vidal,&nbsp;G. Romolini,&nbsp;F. Ronchetti,&nbsp;T. Rong,&nbsp;M. Rotondo,&nbsp;S. R. Roy,&nbsp;M. S. Rudolph,&nbsp;M. Ruiz Diaz,&nbsp;R. A. Ruiz Fernandez,&nbsp;J. Ruiz Vidal,&nbsp;A. Ryzhikov,&nbsp;J. Ryzka,&nbsp;J. J. Saavedra-Arias,&nbsp;J. J. Saborido Silva,&nbsp;R. Sadek,&nbsp;N. Sagidova,&nbsp;D. Sahoo,&nbsp;N. Sahoo,&nbsp;B. Saitta,&nbsp;M. Salomoni,&nbsp;I. Sanderswood,&nbsp;R. Santacesaria,&nbsp;C. Santamarina Rios,&nbsp;M. Santimaria,&nbsp;L. Santoro,&nbsp;E. Santovetti,&nbsp;A. Saputi,&nbsp;D. Saranin,&nbsp;A. Sarnatskiy,&nbsp;G. Sarpis,&nbsp;M. Sarpis,&nbsp;C. Satriano,&nbsp;A. Satta,&nbsp;M. Saur,&nbsp;D. Savrina,&nbsp;H. Sazak,&nbsp;F. Sborzacchi,&nbsp;L. G. Scantlebury Smead,&nbsp;A. Scarabotto,&nbsp;S. Schael,&nbsp;S. Scherl,&nbsp;M. Schiller,&nbsp;H. Schindler,&nbsp;M. Schmelling,&nbsp;B. Schmidt,&nbsp;S. Schmitt,&nbsp;H. Schmitz,&nbsp;O. Schneider,&nbsp;A. Schopper,&nbsp;N. Schulte,&nbsp;S. Schulte,&nbsp;M. H. Schune,&nbsp;R. Schwemmer,&nbsp;G. Schwering,&nbsp;B. Sciascia,&nbsp;A. Sciuccati,&nbsp;S. Sellam,&nbsp;A. Semennikov,&nbsp;T. Senger,&nbsp;M. Senghi Soares,&nbsp;A. Sergi,&nbsp;N. Serra,&nbsp;L. Sestini,&nbsp;A. Seuthe,&nbsp;Y. Shang,&nbsp;D. M. Shangase,&nbsp;M. Shapkin,&nbsp;R. S. Sharma,&nbsp;I. Shchemerov,&nbsp;L. Shchutska,&nbsp;T. Shears,&nbsp;L. Shekhtman,&nbsp;Z. Shen,&nbsp;S. Sheng,&nbsp;V. Shevchenko,&nbsp;B. Shi,&nbsp;Q. Shi,&nbsp;Y. Shimizu,&nbsp;E. Shmanin,&nbsp;R. Shorkin,&nbsp;J. D. Shupperd,&nbsp;R. Silva Coutinho,&nbsp;G. Simi,&nbsp;S. Simone,&nbsp;N. Skidmore,&nbsp;T. Skwarnicki,&nbsp;M. W. Slater,&nbsp;J. C. Smallwood,&nbsp;E. Smith,&nbsp;K. Smith,&nbsp;M. Smith,&nbsp;A. Snoch,&nbsp;L. Soares Lavra,&nbsp;M. D. Sokoloff,&nbsp;F. J. P. Soler,&nbsp;A. Solomin,&nbsp;A. Solovev,&nbsp;I. Solovyev,&nbsp;R. Song,&nbsp;Y. Song,&nbsp;Y. Song,&nbsp;Y. S. Song,&nbsp;F. L. Souza De Almeida,&nbsp;B. Souza De Paula,&nbsp;E. Spadaro Norella,&nbsp;E. Spedicato,&nbsp;J. G. Speer,&nbsp;E. Spiridenkov,&nbsp;P. Spradlin,&nbsp;V. Sriskaran,&nbsp;F. Stagni,&nbsp;M. Stahl,&nbsp;S. Stahl,&nbsp;S. Stanislaus,&nbsp;E. N. Stein,&nbsp;O. Steinkamp,&nbsp;O. Stenyakin,&nbsp;H. Stevens,&nbsp;D. Strekalina,&nbsp;Y. Su,&nbsp;F. Suljik,&nbsp;J. Sun,&nbsp;L. Sun,&nbsp;Y. Sun,&nbsp;D. Sundfeld,&nbsp;W. Sutcliffe,&nbsp;P. N. Swallow,&nbsp;K. Swientek,&nbsp;F. Swystun,&nbsp;A. Szabelski,&nbsp;T. Szumlak,&nbsp;Y. Tan,&nbsp;M. D. Tat,&nbsp;A. Terentev,&nbsp;F. Terzuoli,&nbsp;F. Teubert,&nbsp;E. Thomas,&nbsp;D. J. D. Thompson,&nbsp;H. Tilquin,&nbsp;V. Tisserand,&nbsp;S. T’Jampens,&nbsp;M. Tobin,&nbsp;L. Tomassetti,&nbsp;G. Tonani,&nbsp;X. Tong,&nbsp;D. Torres Machado,&nbsp;L. Toscano,&nbsp;D. Y. Tou,&nbsp;C. Trippl,&nbsp;G. Tuci,&nbsp;N. Tuning,&nbsp;L. H. Uecker,&nbsp;A. Ukleja,&nbsp;D. J. Unverzagt,&nbsp;E. Ursov,&nbsp;A. Usachov,&nbsp;A. Ustyuzhanin,&nbsp;U. Uwer,&nbsp;V. Vagnoni,&nbsp;V. Valcarce Cadenas,&nbsp;G. Valenti,&nbsp;N. Valls Canudas,&nbsp;H. Van Hecke,&nbsp;E. van Herwijnen,&nbsp;C. B. Van Hulse,&nbsp;R. Van Laak,&nbsp;M. van Veghel,&nbsp;G. Vasquez,&nbsp;R. Vazquez Gomez,&nbsp;P. Vazquez Regueiro,&nbsp;C. Vázquez Sierra,&nbsp;S. Vecchi,&nbsp;J. J. Velthuis,&nbsp;M. Veltri,&nbsp;A. Venkateswaran,&nbsp;M. Verdoglia,&nbsp;M. Vesterinen,&nbsp;D. Vico Benet,&nbsp;P. Vidrier Villalba,&nbsp;M. Vieites Diaz,&nbsp;X. Vilasis-Cardona,&nbsp;E. Vilella Figueras,&nbsp;A. Villa,&nbsp;P. Vincent,&nbsp;F. C. Volle,&nbsp;D. vom Bruch,&nbsp;N. Voropaev,&nbsp;K. Vos,&nbsp;G. Vouters,&nbsp;C. Vrahas,&nbsp;J. Wagner,&nbsp;J. Walsh,&nbsp;E. J. Walton,&nbsp;G. Wan,&nbsp;C. Wang,&nbsp;G. Wang,&nbsp;H. Wang,&nbsp;J. Wang,&nbsp;J. Wang,&nbsp;J. Wang,&nbsp;J. Wang,&nbsp;M. Wang,&nbsp;N. W. Wang,&nbsp;R. Wang,&nbsp;X. Wang,&nbsp;X. Wang,&nbsp;X. W. Wang,&nbsp;Y. Wang,&nbsp;Y. W. Wang,&nbsp;Z. Wang,&nbsp;Z. Wang,&nbsp;Z. Wang,&nbsp;J. A. Ward,&nbsp;M. Waterlaat,&nbsp;N. K. Watson,&nbsp;D. Websdale,&nbsp;Y. Wei,&nbsp;J. Wendel,&nbsp;B. D. C. Westhenry,&nbsp;C. White,&nbsp;M. Whitehead,&nbsp;E. Whiter,&nbsp;A. R. Wiederhold,&nbsp;D. Wiedner,&nbsp;G. Wilkinson,&nbsp;M. K. Wilkinson,&nbsp;M. Williams,&nbsp;M. R. J. Williams,&nbsp;R. Williams,&nbsp;Z. Williams,&nbsp;F. F. Wilson,&nbsp;M. Winn,&nbsp;W. Wislicki,&nbsp;M. Witek,&nbsp;L. Witola,&nbsp;G. Wormser,&nbsp;S. A. Wotton,&nbsp;H. Wu,&nbsp;J. Wu,&nbsp;Y. Wu,&nbsp;Z. Wu,&nbsp;K. Wyllie,&nbsp;S. Xian,&nbsp;Z. Xiang,&nbsp;Y. Xie,&nbsp;A. Xu,&nbsp;J. Xu,&nbsp;L. Xu,&nbsp;L. Xu,&nbsp;M. Xu,&nbsp;Z. Xu,&nbsp;Z. Xu,&nbsp;Z. Xu,&nbsp;D. Yang,&nbsp;K. Yang,&nbsp;S. Yang,&nbsp;X. Yang,&nbsp;Y. Yang,&nbsp;Z. Yang,&nbsp;Z. Yang,&nbsp;V. Yeroshenko,&nbsp;H. Yeung,&nbsp;H. Yin,&nbsp;X. Yin,&nbsp;C. Y. Yu,&nbsp;J. Yu,&nbsp;X. Yuan,&nbsp;Y. Yuan,&nbsp;E. Zaffaroni,&nbsp;M. Zavertyaev,&nbsp;M. Zdybal,&nbsp;F. Zenesini,&nbsp;C. Zeng,&nbsp;M. Zeng,&nbsp;C. Zhang,&nbsp;D. Zhang,&nbsp;J. Zhang,&nbsp;L. Zhang,&nbsp;S. Zhang,&nbsp;S. Zhang,&nbsp;Y. Zhang,&nbsp;Y. Z. Zhang,&nbsp;Y. Zhao,&nbsp;A. Zharkova,&nbsp;A. Zhelezov,&nbsp;S. Z. Zheng,&nbsp;X. Z. Zheng,&nbsp;Y. Zheng,&nbsp;T. Zhou,&nbsp;X. Zhou,&nbsp;Y. Zhou,&nbsp;V. Zhovkovska,&nbsp;L. Z. Zhu,&nbsp;X. Zhu,&nbsp;X. Zhu,&nbsp;V. Zhukov,&nbsp;J. Zhuo,&nbsp;Q. Zou,&nbsp;D. Zuliani,&nbsp;G. Zunica","doi":"10.1007/JHEP01(2025)061","DOIUrl":"10.1007/JHEP01(2025)061","url":null,"abstract":"<p>A time-dependent, flavour-tagged measurement of <i>CP</i> violation is performed with <i>B</i><sup>0</sup> <i>→ D</i><sup>+</sup><i>D</i><sup><i>−</i></sup> and <span>( {B}_s^0 )</span> <i>→</i> <span>( {D}_s^{+}{D}_s^{-} )</span> decays, using data collected by the LHCb detector in proton-proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 6 fb<sup><i>−</i>1</sup>. In <i>B</i><sup>0</sup> <i>→ D</i><sup>+</sup><i>D</i><sup><i>−</i></sup> decays the <i>CP</i>-violation parameters are measured to be</p><p>In <span>( {B}_s^0 )</span> <i>→</i> <span>( {D}_s^{+}{D}_s^{-} )</span> decays the <i>CP</i>-violating parameter formulation in terms of <i>ϕ</i><sub><i>s</i></sub> and <i>|λ|</i> results in</p><p>These results represent the most precise single measurement of the <i>CP</i>-violation parameters in their respective channels. For the first time in a single measurement, <i>CP</i> symmetry is observed to be violated in <i>B</i><sup>0</sup> <i>→ D</i><sup>+</sup><i>D</i><sup><i>−</i></sup> decays with a significance exceeding six standard deviations.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)061.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142939082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of High Energy Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1