Chengyuan Wang, Yun Chen, Jinwen Wang, Xin Yang, Hong Gao, Fuli Li
{"title":"Generation and characterization of customized Laguerre–Gaussian beams with arbitrary profiles","authors":"Chengyuan Wang, Yun Chen, Jinwen Wang, Xin Yang, Hong Gao, Fuli Li","doi":"10.1007/s11467-024-1426-3","DOIUrl":null,"url":null,"abstract":"<div><p>We experimentally demonstrate the generation of customized Laguerre–Gaussian (LG) beams whose intensity maxima are localized around any desired curves. The principle is to act with appropriate algebraic functions on the angular spectra of LG beams. We characterize the propagation properties of these beams and compare them with non-diffraction caustic beams possessing the same intensity profiles. The results manifest that the customized-LG beams can maintain their profiles during propagation and suffer less energy loss than the non-diffraction caustic beams, and hence are able to propagate a longer distance. Moreover, the customized-LG beam exhibits self-healing ability when parts of their bodies are blocked. This new structure beam has potential applications in areas such as optical communication, soliton routing and steering, and optical tweezing.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 4","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-024-1426-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We experimentally demonstrate the generation of customized Laguerre–Gaussian (LG) beams whose intensity maxima are localized around any desired curves. The principle is to act with appropriate algebraic functions on the angular spectra of LG beams. We characterize the propagation properties of these beams and compare them with non-diffraction caustic beams possessing the same intensity profiles. The results manifest that the customized-LG beams can maintain their profiles during propagation and suffer less energy loss than the non-diffraction caustic beams, and hence are able to propagate a longer distance. Moreover, the customized-LG beam exhibits self-healing ability when parts of their bodies are blocked. This new structure beam has potential applications in areas such as optical communication, soliton routing and steering, and optical tweezing.
我们通过实验演示了定制拉盖尔-高斯(LG)光束的生成,这些光束的强度最大值被定位在任何所需的曲线周围。其原理是用适当的代数函数作用于 LG 光束的角频谱。我们描述了这些光束的传播特性,并将它们与具有相同强度剖面的非衍射苛性光束进行了比较。结果表明,与非衍射苛性光束相比,定制 LG 光束在传播过程中能保持其轮廓,能量损失较小,因此能传播更长的距离。此外,定制 LG 光束在其部分主体受阻时还能表现出自我修复能力。这种新结构光束在光通信、孤子路由和转向以及光镊等领域具有潜在的应用前景。
期刊介绍:
Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include:
Quantum computation and quantum information
Atomic, molecular, and optical physics
Condensed matter physics, material sciences, and interdisciplinary research
Particle, nuclear physics, astrophysics, and cosmology
The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.