Wu Chen, Mingwei Liao, Shengda Bao, Sile An, Wenwei Li, Xin Liu, Ganghua Huang, Hui Gong, Qingming Luo, Chi Xiao, Anan Li
{"title":"A hierarchically annotated dataset drives tangled filament recognition in digital neuron reconstruction","authors":"Wu Chen, Mingwei Liao, Shengda Bao, Sile An, Wenwei Li, Xin Liu, Ganghua Huang, Hui Gong, Qingming Luo, Chi Xiao, Anan Li","doi":"10.1016/j.patter.2024.101007","DOIUrl":null,"url":null,"abstract":"<p>Reconstructing neuronal morphology is vital for classifying neurons and mapping brain connectivity. However, it remains a significant challenge due to its complex structure, dense distribution, and low image contrast. In particular, AI-assisted methods often yield numerous errors that require extensive manual intervention. Therefore, reconstructing hundreds of neurons is already a daunting task for general research projects. A key issue is the lack of specialized training for challenging regions due to inadequate data and training methods. This study extracted 2,800 challenging neuronal blocks and categorized them into multiple density levels. Furthermore, we enhanced images using an axial continuity-based network that improved three-dimensional voxel resolution while reducing the difficulty of neuron recognition. Comparing the pre- and post-enhancement results in automatic algorithms using fluorescence micro-optical sectioning tomography (fMOST) data, we observed a significant increase in the recall rate. Our study not only enhances the throughput of reconstruction but also provides a fundamental dataset for tangled neuron reconstruction.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"38 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Reconstructing neuronal morphology is vital for classifying neurons and mapping brain connectivity. However, it remains a significant challenge due to its complex structure, dense distribution, and low image contrast. In particular, AI-assisted methods often yield numerous errors that require extensive manual intervention. Therefore, reconstructing hundreds of neurons is already a daunting task for general research projects. A key issue is the lack of specialized training for challenging regions due to inadequate data and training methods. This study extracted 2,800 challenging neuronal blocks and categorized them into multiple density levels. Furthermore, we enhanced images using an axial continuity-based network that improved three-dimensional voxel resolution while reducing the difficulty of neuron recognition. Comparing the pre- and post-enhancement results in automatic algorithms using fluorescence micro-optical sectioning tomography (fMOST) data, we observed a significant increase in the recall rate. Our study not only enhances the throughput of reconstruction but also provides a fundamental dataset for tangled neuron reconstruction.