In-situ construction of RuS2 nanocrystal-decorated amorphous NiSx nanosheets for industrial-current-density water splitting

IF 9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Materials Today Energy Pub Date : 2024-05-31 DOI:10.1016/j.mtener.2024.101616
Hongmei Zhang, Changwu Lv, Jixi Guo, Talgar Shaymurat, Hongbin Yao
{"title":"In-situ construction of RuS2 nanocrystal-decorated amorphous NiSx nanosheets for industrial-current-density water splitting","authors":"Hongmei Zhang, Changwu Lv, Jixi Guo, Talgar Shaymurat, Hongbin Yao","doi":"10.1016/j.mtener.2024.101616","DOIUrl":null,"url":null,"abstract":"Developing enabling electrocatalysts for water splitting to operate at industrial-current-density is crucial for large-scale hydrogen production. Herein, a facile wet-chemistry strategy and scalable in-situ sulfidation technique are designed for formation of RuS nanocrystal-decorated amorphous NiS nanosheets vertically aligned on Ni foam (NF) (RuNiS/NF) as ultra-highly efficient electrocatalysts for electrochemical water splitting (EWS). The optimized electrocatalyst exhibits an excellent hydrogen evolution reaction (HER) performance, requiring overpotentials of only 15, 50, and 114 mV at 10, 100, and 1000 mA/cm, respectively, with robust stability at 10, 100, and 500 mA/cm for 120 h, ranking it one of the efficient electrocatalysts for industrial water electrolysis. The electron redistribution over heterointerfaces induces the modulatory electronic states of heterostructures, thus leading to the favorable adsorption behavior for reaction intermediates, enhancing intrinsic activity of active sites. Impressively, a RuNiS/NF||RuNiS/NF EWS device can afford industrial current densities of 10, 100, and 500 mA/cm at voltages of 1.55, 1.77, and 2.35 V, respectively, together with robust durability for over 50 h (@1000 mA/cm). This work provides an innovative approach to design unique heterostructures for industrial EWS via modulatory electronic states.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"38 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101616","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing enabling electrocatalysts for water splitting to operate at industrial-current-density is crucial for large-scale hydrogen production. Herein, a facile wet-chemistry strategy and scalable in-situ sulfidation technique are designed for formation of RuS nanocrystal-decorated amorphous NiS nanosheets vertically aligned on Ni foam (NF) (RuNiS/NF) as ultra-highly efficient electrocatalysts for electrochemical water splitting (EWS). The optimized electrocatalyst exhibits an excellent hydrogen evolution reaction (HER) performance, requiring overpotentials of only 15, 50, and 114 mV at 10, 100, and 1000 mA/cm, respectively, with robust stability at 10, 100, and 500 mA/cm for 120 h, ranking it one of the efficient electrocatalysts for industrial water electrolysis. The electron redistribution over heterointerfaces induces the modulatory electronic states of heterostructures, thus leading to the favorable adsorption behavior for reaction intermediates, enhancing intrinsic activity of active sites. Impressively, a RuNiS/NF||RuNiS/NF EWS device can afford industrial current densities of 10, 100, and 500 mA/cm at voltages of 1.55, 1.77, and 2.35 V, respectively, together with robust durability for over 50 h (@1000 mA/cm). This work provides an innovative approach to design unique heterostructures for industrial EWS via modulatory electronic states.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位构建 RuS2 纳米晶体装饰的无定形 NiSx 纳米片,用于工业电流密度的水分离
开发能以工业电流密度运行的水分离电催化剂对于大规模制氢至关重要。本文设计了一种简便的湿化学策略和可扩展的原位硫化技术,用于在镍泡沫(NF)上垂直排列形成 RuS 纳米晶装饰的无定形 NiS 纳米片(RuNiS/NF),作为电化学水分离(EWS)的超高效电催化剂。优化后的电催化剂表现出优异的氢进化反应(HER)性能,在 10、100 和 1000 mA/cm 下的过电位分别仅为 15、50 和 114 mV,并且在 10、100 和 500 mA/cm 下可稳定运行 120 小时,是工业用水电解的高效电催化剂之一。异质界面上的电子再分布诱导了异质结构的调制电子态,从而导致了对反应中间产物的有利吸附行为,提高了活性位点的内在活性。令人印象深刻的是,RuNiS/NF||RuNiS/NF EWS 器件在电压为 1.55、1.77 和 2.35 V 时的工业电流密度分别为 10、100 和 500 mA/cm,而且耐用性超过 50 h(@1000 mA/cm)。这项工作提供了一种创新方法,通过调制电子状态为工业 EWS 设计独特的异质结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Energy
Materials Today Energy Materials Science-Materials Science (miscellaneous)
CiteScore
15.10
自引率
7.50%
发文量
291
审稿时长
15 days
期刊介绍: Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy. Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials. Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to: -Solar energy conversion -Hydrogen generation -Photocatalysis -Thermoelectric materials and devices -Materials for nuclear energy applications -Materials for Energy Storage -Environment protection -Sustainable and green materials
期刊最新文献
Magnetic field-augmented photoelectrochemical water splitting in Co3O4 and NiO nanorod arrays Evolution from passive to active components in lithium metal and lithium-ion batteries separators Prolonging rechargeable aluminum batteries life with flexible ceramic separator Efficient hole transport layers for silicon heterojunction solar cells by surface plasmonic modification in MoOx/Au NPs/MoOx stacks Self-powered sensors utilizing single-pillar thermocells with pyrolytic graphite sheet electrodes: harvesting body heat and solar thermal energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1