A comprehensive study of structural, dielectric, electrical, thermal, and optical properties of Na/W co-doped BiMnO3 complex electroceramic; (Bi1/2Na1/2)(Mn1/2W1/2)O3
{"title":"A comprehensive study of structural, dielectric, electrical, thermal, and optical properties of Na/W co-doped BiMnO3 complex electroceramic; (Bi1/2Na1/2)(Mn1/2W1/2)O3","authors":"Sudhansu Sekhar Hota, Debasish Panda, Monalisa Jena, Swayangshree Ojha, Ananya Samal, Ram Naresh Prasad Choudhary","doi":"10.1007/s10832-024-00347-z","DOIUrl":null,"url":null,"abstract":"<p>In this report, we present the fabrication through the solid-state method and subsequent characterization (structural, electrical, optical, and thermal properties) of a lead-free Na/W modified complex BiMnO<sub>3</sub> ceramic of a chemical composition (Bi<sub>1/2</sub>Na<sub>1/2</sub>)(Mn<sub>1/2</sub>W<sub>1/2</sub>)O<sub>3</sub>. The structural analysis, including the determination of structure and lattice parameters, was performed using X-ray diffraction data, revealing a monoclinic crystal structure of the material. Additional insights into its vibrational properties were obtained through Raman spectroscopy and Fourier Transform Infrared spectrum. The electronic behaviour of the prepared sample was investigated using photoluminescence (PL). Scanning electron microscope analysis revealed a uniform distribution of grains. The energy-dispersive X-ray study confirmed compositional uniformity. Furthermore, a comprehensive analysis of dielectric properties, impedance, modulus, and conductivity was carried out over a range of frequencies (1 kHz – 1 MHz) and temperatures (25 °C – 500 °C) to understand the Maxwell–Wagner type of dielectric dispersion, relaxation, and transport mechanisms. The Nyquist plots and the temperature-dependent conductivity data exhibited a negative temperature coefficient of resistance behavior. The modulus data indicated a scaling nature, indicative of non-Debye type relaxation. Additionally, the study of polarization with an electric field suggested the possibility of a ferroelectric behavior of the material.</p>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"3 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10832-024-00347-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this report, we present the fabrication through the solid-state method and subsequent characterization (structural, electrical, optical, and thermal properties) of a lead-free Na/W modified complex BiMnO3 ceramic of a chemical composition (Bi1/2Na1/2)(Mn1/2W1/2)O3. The structural analysis, including the determination of structure and lattice parameters, was performed using X-ray diffraction data, revealing a monoclinic crystal structure of the material. Additional insights into its vibrational properties were obtained through Raman spectroscopy and Fourier Transform Infrared spectrum. The electronic behaviour of the prepared sample was investigated using photoluminescence (PL). Scanning electron microscope analysis revealed a uniform distribution of grains. The energy-dispersive X-ray study confirmed compositional uniformity. Furthermore, a comprehensive analysis of dielectric properties, impedance, modulus, and conductivity was carried out over a range of frequencies (1 kHz – 1 MHz) and temperatures (25 °C – 500 °C) to understand the Maxwell–Wagner type of dielectric dispersion, relaxation, and transport mechanisms. The Nyquist plots and the temperature-dependent conductivity data exhibited a negative temperature coefficient of resistance behavior. The modulus data indicated a scaling nature, indicative of non-Debye type relaxation. Additionally, the study of polarization with an electric field suggested the possibility of a ferroelectric behavior of the material.
期刊介绍:
While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including:
-insulating to metallic and fast ion conductivity
-piezo-, ferro-, and pyro-electricity
-electro- and nonlinear optical properties
-feromagnetism.
When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice.
The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.